Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome

被引:81
作者
Casero, David [1 ]
Gill, Kirandeep [2 ]
Sridharan, Vijayalakshmi [3 ]
Koturbash, Igor [4 ]
Nelson, Gregory [5 ]
Hauer-Jensen, Martin [3 ]
Boerma, Marjan [3 ]
Braun, Jonathan [1 ]
Cheema, Amrita K. [2 ,6 ,7 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
[2] Georgetown Univ, Med Ctr, Dept Oncol, Washington, DC 20057 USA
[3] Univ Arkansas Med Sci, Div Radiat Hlth, Little Rock, AR 72205 USA
[4] Univ Arkansas Med Sci, Dept Environm & Occupat Hlth, Little Rock, AR 72205 USA
[5] Loma Linda Univ, Dept Radiat Med, Loma Linda, CA 92350 USA
[6] Georgetown Univ, Med Ctr, Dept Biochem & Mol & & Cellular Biol, Washington, DC 20057 USA
[7] GCD 7N Preclin Sci Bldg,3900 Reservoir Rd NW, Washington, DC 20057 USA
关键词
Ionizing radiation; Space travel; Microbiome; 16S rRNA amplicon sequencing; Untargeted metabolomics; Metabolic network modeling; INTESTINAL MICROBIOTA; ACID-METABOLISM; HIGH-FAT; DIET; DIVERSITY; BACTERIA; VIROME; MUCOSA; MODELS; HEALTH;
D O I
10.1186/s40168-017-0325-z
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Results: Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host's cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. Conclusions: The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation effects.
引用
收藏
页数:18
相关论文
共 87 条
[1]   Environmental coupling in ecosystems: From oscillation quenching to rhythmogenesis [J].
Arumugam, Ramesh ;
Dutta, Partha Sharathi ;
Banerjee, Tanmoy .
PHYSICAL REVIEW E, 2016, 94 (02)
[2]   Species-Specific Adaptations of Trypanosome Morphology and Motility to the Mammalian Host [J].
Bargul, Joel L. ;
Jung, Jamin ;
McOdimba, Francis A. ;
Omogo, Collins O. ;
Adung'a, Vincent O. ;
Krueger, Timothy ;
Masiga, Daniel K. ;
Engstler, Markus .
PLOS PATHOGENS, 2016, 12 (02)
[3]   Structure of the gut microbiome following colonization with human feces determines colonic tumor burden [J].
Baxter, Nielson T. ;
Zackular, Joseph P. ;
Chen, Grace Y. ;
Schloss, Patrick D. .
MICROBIOME, 2014, 2
[4]  
Bokulich NA, 2013, NAT METHODS, V10, P57, DOI [10.1038/NMETH.2276, 10.1038/nmeth.2276]
[5]   Oral Interleukin 11 as a Countermeasure to Lethal Total-Body Irradiation in a Murine Model [J].
Burnett, Alexander F. ;
Biju, Prabath G. ;
Lui, Huanli ;
Hauer-Jensen, Martin .
RADIATION RESEARCH, 2013, 180 (06) :595-602
[6]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[7]   PyNAST: a flexible tool for aligning sequences to a template alignment [J].
Caporaso, J. Gregory ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
DeSantis, Todd Z. ;
Andersen, Gary L. ;
Knight, Rob .
BIOINFORMATICS, 2010, 26 (02) :266-267
[8]   Diet Dominates Host Genotype in Shaping the Murine Gut Microbiota [J].
Carmody, Rachel N. ;
Gerber, Georg K. ;
Luevano, Jesus M., Jr. ;
Gatti, Daniel M. ;
Somes, Lisa ;
Svenson, Karen L. ;
Turnbaugh, Peter J. .
CELL HOST & MICROBE, 2015, 17 (01) :72-84
[9]  
Chancellor Jeffery C., 2014, Life-Basel, V4, P491, DOI 10.3390/life4030491
[10]   Sialylated Milk Oligosaccharides Promote Microbiota-Dependent Growth in Models of Infant Undernutrition [J].
Charbonneau, Mark R. ;
O'Donnell, David ;
Blanton, Laura V. ;
Totten, Sarah M. ;
Davis, Jasmine C. C. ;
Barratt, Michael J. ;
Cheng, Jiye ;
Guruge, Janaki ;
Talcott, Michael ;
Bain, James R. ;
Muehlbauer, Michael J. ;
Ilkayeva, Olga ;
Wu, Chao ;
Struckmeyer, Tedd ;
Barile, Daniela ;
Mangani, Charles ;
Jorgensen, Josh ;
Fan, Yue-mei ;
Maleta, Kenneth ;
Dewey, Kathryn G. ;
Ashorn, Per ;
Newgard, Christopher B. ;
Lebrilla, Carlito ;
Mills, David A. ;
Gordon, Jeffrey I. .
CELL, 2016, 164 (05) :859-871