Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging

被引:161
作者
Halicek, Martin [1 ,2 ,3 ]
Lu, Guolan [1 ,2 ]
Little, James V. [4 ]
Wang, Xu [5 ]
Patel, Mihir [6 ,7 ]
Griffith, Christopher C. [4 ]
El-Deiry, Mark W. [6 ,7 ]
Chen, Amy Y. [6 ,7 ]
Fei, Baowei [1 ,2 ,7 ,8 ,9 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Emory Univ, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[3] Med Coll Georgia, Augusta, GA 30912 USA
[4] Emory Univ, Sch Med, Dept Pathol & Lab Med, Atlanta, GA 30322 USA
[5] Emory Univ, Sch Med, Dept Hematol & Med Oncol, Atlanta, GA USA
[6] Emory Univ, Sch Med, Dept Otolaryngol, Atlanta, GA USA
[7] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[8] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
[9] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
关键词
hyperspectral imaging; convolutional neural network; cancer detection; deep learning; image-guided surgery;
D O I
10.1117/1.JBO.22.6.060503
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Surgical cancer resection requires an accurate and timely diagnosis of the cancer margins in order to achieve successful patient remission. Hyperspectral imaging (HSI) has emerged as a useful, noncontact technique for acquiring spectral and optical properties of tissue. A convolutional neural network (CNN) classifier is developed to classify excised, squamous-cell carcinoma, thyroid cancer, and normal head and neck tissue samples using HSI. The CNN classification was validated by the manual annotation of a pathologist specialized in head and neck cancer. The preliminary results of 50 patients indicate the potential of HSI and deep learning for automatic tissue-labeling of surgical specimens of head and neck patients. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
引用
收藏
页数:4
相关论文
共 14 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
[Anonymous], RECENT DEV SCI OPTIC
[3]  
[Anonymous], 2017, P SPIE INT SOC OPT E
[4]  
[Anonymous], J BIOMED OPT
[5]  
[Anonymous], P SPIE
[6]   Logistic regression and artificial neural network classification models: a methodology review [J].
Dreiseitl, S ;
Ohno-Machado, L .
JOURNAL OF BIOMEDICAL INFORMATICS, 2002, 35 (5-6) :352-359
[7]   Deep Convolutional Neural Networks for Hyperspectral Image Classification [J].
Hu, Wei ;
Huang, Yangyu ;
Wei, Li ;
Zhang, Fan ;
Li, Hengchao .
JOURNAL OF SENSORS, 2015, 2015
[8]   Hyperspectral Imaging of Neoplastic Progression in a Mouse Model of Oral Carcinogenesis [J].
Lu, Guolan ;
Qin, Xulei ;
Wang, Dongsheng ;
Muller, Susan ;
Zhang, Hongzheng ;
Chen, Amy ;
Chen, Zhuo Georgia ;
Fei, Baowei .
MEDICAL IMAGING 2016-BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2016, 9788
[9]   Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery [J].
Lu, Guolan ;
Wang, Dongsheng ;
Qin, Xulei ;
Halig, Luma ;
Muller, Susan ;
Zhang, Hongzheng ;
Chen, Amy ;
Pogue, Brian W. ;
Chen, Zhuo Georgia ;
Fei, Baowei .
JOURNAL OF BIOMEDICAL OPTICS, 2015, 20 (12)
[10]   Quantitative Wavelength Analysis and Image Classification for Intraoperative Cancer Diagnosis with Hyperspectral Imaging [J].
Lu, Guolan ;
Qin, Xulei ;
Wang, Dongsheng ;
Chen, Zhuo Georgia ;
Fei, Baowei .
MEDICAL IMAGING 2015: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2015, 9415