Addison-type series representation for the Stieltjes constants

被引:6
作者
Coffey, Mark W. [1 ]
机构
[1] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
关键词
Stieltjes constants; Riemann zeta function; Laurent expansion; Series representation; Hurwitz zeta function; EULERS CONSTANT;
D O I
10.1016/j.jnt.2010.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Stieltjes constants gamma(k)(a) appear in the coefficients in the regular part of the Laurent expansion of the Hurwitz zeta function zeta(s, a) about its only pole at s = 1. We generalize a technique of Addison for the Euler constant gamma = gamma(0)(1) to show its application to finding series representations for these constants. Other generalizations of representations of gamma are given. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2049 / 2064
页数:16
相关论文
共 27 条
[1]   A SERIES REPRESENTATION FOR EULERS CONSTANT [J].
ADDISON, AW .
AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (07) :823-&
[2]  
[Anonymous], ARXIV09051111
[3]  
[Anonymous], Q J PURE APPL MATH
[4]  
[Anonymous], 1912, Q J PURE APPL MATH
[5]  
[Anonymous], 1985, Number theory and combinatorics. Japan 1984 (Tokyo, Okayama and Kyoto, 1984), P279
[6]  
[Anonymous], 1927, Q J PURE APPL MATH
[7]  
[Anonymous], 1964, HDB MATH FUNCTIONS
[8]  
[Anonymous], 1962, MICH MATH J, DOI DOI 10.1307/MMJ/1028998775
[9]  
[Anonymous], 1909, Q J PURE APPL MATH
[10]  
Barrow D.F., 1951, AM MATH MONTHLY, V58, P116