On cliques in edge-regular graphs

被引:11
作者
Soicher, Leonard H. [1 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
关键词
Edge-regular graph; Orbital graph; Strongly regular graph; Clique; Maximum clique; Regular clique; Quasiregular clique; Delsarte bound; Hoffman bound; Partial geometry;
D O I
10.1016/j.jalgebra.2014.08.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma be an edge-regular graph with given parameters (v, k, lambda). We show how to apply a certain "block intersection polynomial" in two variables to determine a good upper bound on the clique number of Gamma, and to obtain further information concerning the cliques S of Gamma with the property that every vertex of Gamma not in S is adjacent to exactly m or m + 1 vertices of S, for some constant m >= 0. Some interesting examples are studied using computation with groups and graphs. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:260 / 267
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 2007, HDB COMBINATORIAL DE
[2]  
[Anonymous], 2012, GRAPE PACKAGE GAP VE
[3]  
Bailey R. A., 2009, Surveys in combinatorics 2009, V365, P19
[5]  
Brouwer A.E., 1989, Distance-Regular Graphs
[6]   Block intersection polynomials [J].
Cameron, Peter J. ;
Soicher, Leonard H. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :559-564
[7]  
Delsarte P, 1973, PHILIPS RES REP S, V10
[8]  
Faradzev I. A., 1994, INVESTIGATIONS ALGEB, P1, DOI DOI 10.1007/978-94-017-1972-8
[9]  
Haemers W. H., 1996, Designs, Codes and Cryptography, V8, P145, DOI 10.1007/BF00130574
[10]  
Neumaier A., 1981, LONDON MATH SOC LECT, V49, P244