Near-Infrared-Triggered in Situ Gelation System for Repeatedly Enhanced Photothermal Brachytherapy with a Single Dose

被引:103
作者
Meng, Zhouqi [1 ]
Chao, Yu [1 ]
Zhou, Xuanfang [1 ]
Liang, Chao [1 ]
Liu, Jingjing [1 ]
Zhang, Rui [1 ]
Cheng, Liang [1 ]
Yang, Kai [2 ,3 ]
Pan, Wei [4 ]
Zhu, Meifang [5 ]
Liu, Zhuang [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[2] Soochow Univ, Jiangsu Higher Educ Inst, Collaborat Innovat Ctr Radiat Med, State Key Lab Radiat Med & Protect,Sch Radiat Med, Suzhou 215123, Jiangsu, Peoples R China
[3] Soochow Univ, Jiangsu Higher Educ Inst, Collaborat Innovat Ctr Radiat Med, Sch Radiol & Interdisciplinary Sci RAD X, Suzhou 215123, Jiangsu, Peoples R China
[4] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[5] Shandong Normal Univ, Coll Chem Chem Engn & Mat Sci, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
in situ gelation; nanoparticles; NIR photothermal treatment; brachytherapy; tumor hypoxia relief; INTERSTITIAL BRACHYTHERAPY; RADIATION ONCOLOGY; COPPER SULFIDE; HYDROGELS; THERAPY; CANCER; NANOPARTICLES; RADIOTHERAPY; DESIGN; DELIVERY;
D O I
10.1021/acsnano.8b04544
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Brachytherapy by the placing of therapeutic radioactive materials into or near tumors has been widely used in a clinical setting for cancer treatment. The efficacy of brachytherapy, however, may often be limited by the radiation resistance for tumor cells located in the hypoxic region of a solid tumor as well as the non-optimal distribution of radioactivity inside the tumor. Herein, a hybrid hydrogel system is developed by using(131)I-labeled copper sulfide (CuS/I-131) nanoparticles as the photothermal- and radiotherapeutic agent, poly(ethylene glycol) double acrylates (PEGDA) as the polymeric matrix, and 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (MPH) as the thermal initiator to realize light-induced in situ gelation in the tumor for the combined photothermal brachytherapy. After local injection, CuS/I-131 nanoparticles under irradiation by the 915 nm near-infrared (NIR) laser would produce heat to mildly raise the tumor temperature and initiate the polymerization of PEGDA by activating the AIPH thermal initiator, effectively fixing CuS/I-131 by in situ gelation within the tumor for the long term. By the repeated NIR irradiation of tumors, the tumor hypoxia could be relieved for a much-longer term, resulting in a significant synergistic photothermal brachytherapeutic effect to eliminate tumors. This work presents an efficient type of NIR-responsive nanoparticle-encapsulated hydrogel system, inspiring the design of a form of brachytherapy.
引用
收藏
页码:9412 / 9422
页数:11
相关论文
共 52 条
[1]   Tough, Semisynthetic Hydrogels for Adipose Derived Stem Cell Delivery for Chondral Defect Repair [J].
Anjum, Fraz ;
Carroll, Andrew ;
Young, Stuart A. ;
Flynn, Lauren E. ;
Amsden, Brian G. .
MACROMOLECULAR BIOSCIENCE, 2017, 17 (05)
[2]   The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence [J].
Barker, Holly E. ;
Paget, James T. E. ;
Khan, Aadil A. ;
Harrington, Kevin J. .
NATURE REVIEWS CANCER, 2015, 15 (07) :409-425
[3]   Cancer and Radiation Therapy: Current Advances and Future Directions [J].
Baskar, Rajamanickam ;
Lee, Kuo Ann ;
Yeo, Richard ;
Yeoh, Kheng-Wei .
INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2012, 9 (03) :193-199
[4]   Radiation oncology in the era of precision medicine [J].
Baumann, Michael ;
Krause, Mechthild ;
Overgaard, Jens ;
Debus, Juergen ;
Bentzen, Soren M. ;
Daartz, Juliane ;
Richter, Christian ;
Zips, Daniel ;
Bortfeld, Thomas .
NATURE REVIEWS CANCER, 2016, 16 (04) :234-249
[5]   Timeline - Radiation oncology: a century of achievements [J].
Bernier, J ;
Hall, EJ ;
Giaccia, A .
NATURE REVIEWS CANCER, 2004, 4 (09) :737-U15
[6]   Thiol-Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies [J].
Bertlein, Sarah ;
Brown, Gabriella ;
Lim, Khoon S. ;
Jungst, Tomasz ;
Boeck, Thomas ;
Blunk, Torsten ;
Tessmar, Joerg ;
Hooper, Gary J. ;
Woodfield, Tim B. F. ;
Groll, Juergen .
ADVANCED MATERIALS, 2017, 29 (44)
[7]   Hypoxia, DNA repair and genetic instability [J].
Bristow, Robert G. ;
Hill, Richard P. .
NATURE REVIEWS CANCER, 2008, 8 (03) :180-192
[8]   Determination of the in vivo degradation mechanism of PEGDA hydrogels [J].
Browning, M. B. ;
Cereceres, S. N. ;
Luong, P. T. ;
Cosgriff-Hernandez, E. M. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2014, 102 (12) :4244-4251
[9]   Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics [J].
Chen, Guanying ;
Qju, Hailong ;
Prasad, Paras N. ;
Chen, Xiaoyuan .
CHEMICAL REVIEWS, 2014, 114 (10) :5161-5214
[10]   Functional Nanomaterials for Phototherapies of Cancer [J].
Cheng, Liang ;
Wang, Chao ;
Feng, Liangzhu ;
Yang, Kai ;
Liu, Zhuang .
CHEMICAL REVIEWS, 2014, 114 (21) :10869-10939