Room-temperature growth of colloidal Bi2Te3 nanosheets

被引:10
|
作者
Sokolikova, M. S. [1 ]
Sherrell, P. C. [1 ]
Palczynski, P. [1 ]
Bemmer, V. L. [1 ]
Mattevi, C. [1 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
FIGURE-OF-MERIT; RAMAN-SPECTROSCOPY; NANOPARTICLES; NANOCRYSTALS; EXFOLIATION; EVOLUTION; SURFACE; BI2SE3;
D O I
10.1039/c7cc03151c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we report the colloidal synthesis of Bi2Te3 nanosheets with controlled thickness, morphology and crystallinity at temperatures as low as 20 degrees C. Grown at room temperature, Bi2Te3 exhibits two-dimensional morphology with thickness of 4 nm and lateral size of 200 nm. Upon increasing the temperature to 170 degrees C, the nanosheets demonstrate increased thickness of 16 nm and lateral dimensions of 600 nm where polycrystalline nanosheets (20 degrees C) are replaced by single crystal platelets (170 degrees C). Rapid synthesis of the material at moderately low temperatures with controllable morphology, crystallinity and consequently electrical and thermal properties can pave the way toward its large-scale production for practical applications.
引用
收藏
页码:8026 / 8029
页数:4
相关论文
共 50 条
  • [21] High Yield Bi2Te3 Single Crystal Nanosheets with Uniform Morphology via a Solvothermal Synthesis
    Zhang, Y.
    Hu, L. P.
    Zhu, T. J.
    Xie, J.
    Zhao, X. B.
    CRYSTAL GROWTH & DESIGN, 2013, 13 (02) : 645 - 651
  • [22] Investigation of dimensionality-dependent thermal stability of bi2Te3
    Singh, Rini
    Anoop, M. D.
    Rathore, Rajan K.
    Verma, Ajay S.
    Awasthi, Kamlendra
    Saraswat, Vibhav K.
    Kumar, Manoj
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (08):
  • [23] Fast-Response Photodetector Based on Hybrid Bi2Te3/PbS Colloidal Quantum Dots
    Yu, Lijing
    Tian, Pin
    Tang, Libin
    Hao, Qun
    Teng, Kar Seng
    Zhong, Hefu
    Yue, Biao
    Wang, Haipeng
    Yan, Shunying
    NANOMATERIALS, 2022, 12 (18)
  • [24] Crystal Symmetry Breaking in Few Quintuple Bi2Te3 Nanosheets: Applications in Nanometrology of Topological Insulators and Low-Temperature Thermoelectrics
    Srivastava, Punita
    Kumar, Pushpendra
    Singh, Kedar
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (08) : 5856 - 5863
  • [25] Structural and vibrational properties of PVT grown Bi2Te3 microcrystals
    Atuchin, V. V.
    Gavrilova, T. A.
    Kokh, K. A.
    Kuratieva, N. V.
    Pervukhina, N. V.
    Surovtsev, N. V.
    SOLID STATE COMMUNICATIONS, 2012, 152 (13) : 1119 - 1122
  • [26] Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric nanocomposite
    Li, Cong
    Qin, Xiaoying
    Li, Yuanyue
    Li, Di
    Zhang, Jian
    Guo, Haifeng
    Xin, Hongxing
    Song, Chunjun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 661 : 389 - 395
  • [27] Density functional study of Bi2Te3 and Bi4Te6 molecules
    Barlow, D. A.
    MOLECULAR PHYSICS, 2008, 106 (24) : 2699 - 2708
  • [28] Two-dimensional nanoplates of Bi2Te3 and Bi2Se3 with reduced thermal stability
    Kang, Sung Min
    Ha, Sung-Soo
    Jung, Wan-Gil
    Park, Mansoo
    Song, Hyon-Seok
    Kim, Bong-Joong
    Hong, Jung-Il
    AIP ADVANCES, 2016, 6 (02)
  • [29] GROWTH AND MICROSTRUCTURES OF ULTRATHIN Bi2Te3 NANOPLATES BY MODIFIED HOT WALL EPITAXY
    Guo, Jianhua
    Liu, Yucong
    Deng, Huiyong
    Hu, Gujin
    Li, Xiaonan
    Yu, Guolin
    Dai, Ning
    NANO, 2014, 9 (06)
  • [30] Catalyst-free growth of Bi2Te3 nanostructures by molecular beam epitaxy
    Harrison, S. E.
    Schoenherr, P.
    Huo, Y.
    Harris, J. S.
    Hesjedal, T.
    APPLIED PHYSICS LETTERS, 2014, 105 (15)