An ultradiscretization of the sine-Gordon equation

被引:14
作者
Isojima, S [1 ]
Murata, M [1 ]
Nobe, A [1 ]
Satsuma, J [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
integrable systems; soliton; discrete; cellular automaton; sine-Gordon equation;
D O I
10.1016/j.physleta.2004.09.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An ultradiscrete system corresponding to the sine-Gordon equation is proposed. A new dependent variable for the discrete sine-Gordon equation is introduced in order to apply the procedure of ultradiscretization. The ultradiscrete system possesses exact solutions which are directly related to soliton solutions of the discrete equation. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:378 / 386
页数:9
相关论文
共 6 条
[1]  
GRAMMATICOS B, 2000, NONLINEAR DYNAMICS I, P163
[3]   On the Hirota representation of soliton equations with one tau-function [J].
Lambert, F ;
Loris, I ;
Springael, J ;
Willox, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (03) :605-608
[4]   Toda-type cellular automaton and its N-soliton solution [J].
Matsukidaira, J ;
Satsuma, J ;
Takahashi, D ;
Tokihiro, T ;
Torii, M .
PHYSICS LETTERS A, 1997, 225 (4-6) :287-295
[5]   INTEGRABILITY OF MULTIDIMENSIONAL DISCRETE-SYSTEMS [J].
RAMANI, A ;
GRAMMATICOS, B ;
SATSUMA, J .
PHYSICS LETTERS A, 1992, 169 (05) :323-328
[6]   From soliton equations to integrable cellular automata through a limiting procedure [J].
Tokihiro, T ;
Takahashi, D ;
Matsukidaira, J ;
Satsuma, J .
PHYSICAL REVIEW LETTERS, 1996, 76 (18) :3247-3250