Removal of molybdenum(VI) from aqueous solutions using nano zero-valent iron supported on biochar enhanced by cetyl-trimethyl ammonium bromide: adsorption kinetic, isotherm and mechanism studies

被引:20
|
作者
Lian, J. J. [1 ]
Huang, Y. G. [2 ]
Chen, B. [1 ]
Wang, S. S. [1 ]
Wang, P. [1 ]
Niu, S. P. [1 ]
Liu, Z. L. [1 ]
机构
[1] Anhui Univ Technol, Coll Energy & Environm, Maanshan 243002, Anhui, Peoples R China
[2] Hubei Polytech univ, Sch Environm Sci & Engn, Huangshi 435003, Peoples R China
基金
中国国家自然科学基金;
关键词
adsorption; biochar; molybdenum; nano zero-valent iron; pomelo peel; WASTE-WATER; RECOVERY; MO(VI); THERMODYNAMICS; OXIDES; MEDIA; PEEL; VI; RE;
D O I
10.2166/wst.2018.258
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A new carbonized pomelo peel biosorbent (MCPP) modified with nanoscale zero-valent iron (NZVI) and cetyl-trimethyl ammonium bromide was prepared and employed for the adsorption of molybdate (Mo(VI)) from aqueous solution. We investigated the effects of various conditions on Mo(VI) adsorption and evaluated the results based on adsorption kinetics models and isotherm equations. The kinetic data fitted to the pseudo-second-order model. The Langmuir model best described the adsorption of Mo(VI) on MCPP. The values of changes in Gibbs free energy, standard enthalpy, and standard entropy revealed that the adsorption process was feasible, spontaneous and endothermal. X-ray diffraction, Fourier transform infrared and X-ray photoelectron spectroscopy measurements suggested that Mo(VI) adsorption occurred via both the reduction and surface adsorption. Thus, biochar, prepared from fruit residue, can be applied to remove Mo(VI) from aqueous solutions. More importantly, our results provide a sustainable approach for Mo(VI) removal from wastewater by means of functional modification.
引用
收藏
页码:859 / 868
页数:10
相关论文
共 50 条
  • [1] Removal of molybdenum(VI) from aqueous solutions using nano zero-valent iron supported on biochar enhanced by cetyl-trimethyl ammonium bromide: Adsorption kinetic, isotherm and mechanism studies
    Lian J.J.
    Huang Y.G.
    Chen B.
    Wang S.S.
    Wang P.
    Niu S.P.
    Liu Z.L.
    Water Science and Technology, 2018, 2017 (03): : 859 - 868
  • [3] Mechanism of phosphate removal from aqueous solutions by biochar supported nanoscale zero-valent iron
    Ma, Fengfeng
    Zhao, Baowei
    Diao, Jingru
    Jiang, Yufeng
    Zhang, Jian
    RSC ADVANCES, 2020, 10 (64) : 39217 - 39225
  • [4] Enhanced phenanthrene removal in aqueous solution using modified biochar supported nano zero-valent iron
    Wu, Hongwei
    Feng, Qiyan
    Yang, Hong
    Lu, Ping
    Gao, Bo
    Alansari, Amir
    ENVIRONMENTAL TECHNOLOGY, 2019, 40 (23) : 3114 - 3123
  • [5] Mechanism of glyphosate removal by biochar supported nano-zero-valent iron in aqueous solutions
    Jiang, Xianying
    Ouyang, Zhuozhi
    Zhang, Zhengfang
    Yang, Chen
    Li, Xiaoqin
    Dang, Zhi
    Wu, Pingxiao
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2018, 547 : 64 - 72
  • [6] Removal of Molybdenum(VI) from Raw Water Using Nano Zero-Valent Iron Supported on Activated Carbon
    Zhu, Huijie
    Huang, Qiang
    Fu, Shuai
    Zhang, Xiuji
    Shi, Mingyan
    Liu, Bo
    WATER, 2020, 12 (11) : 1 - 12
  • [7] Removal of Aqueous Cr(VI) by Tea Stalk Biochar Supported Nanoscale Zero-Valent Iron: Performance and Mechanism
    Mao, Yujie
    Tao, Yufang
    Zhang, Xulin
    Chu, Zhaopeng
    Zhang, Xinyi
    Huang, He
    WATER AIR AND SOIL POLLUTION, 2023, 234 (03):
  • [8] Removal of Aqueous Cr(VI) by Tea Stalk Biochar Supported Nanoscale Zero-Valent Iron: Performance and Mechanism
    Yujie Mao
    Yufang Tao
    Xulin Zhang
    Zhaopeng Chu
    Xinyi Zhang
    He Huang
    Water, Air, & Soil Pollution, 2023, 234
  • [9] Enhanced removal of Cr(VI) from aqueous solution by nano- zero-valent iron supported by KOH activated sludge-based biochar
    Wang, Hui
    Zhong, Dengjie
    Xu, Yunlan
    Chang, Haixing
    Shen, Hongyu
    Xu, Chunzi
    Mou, Jiaxing
    Zhong, Nianbing
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 651
  • [10] Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar
    Zhang, Yuting
    Jiao, Xinqian
    Liu, Na
    Lv, Jing
    Yang, Yadong
    CHEMOSPHERE, 2020, 245