Monolithic Phononic Crystals with a Surface Acoustic Band Gap from Surface Phonon-Polariton Coupling

被引:43
|
作者
Yudistira, D. [1 ]
Boes, A. [1 ,2 ]
Djafari-Rouhani, B. [3 ]
Pennec, Y. [3 ]
Yeo, L. Y. [4 ]
Mitchell, A. [1 ,2 ]
Friend, J. R. [4 ,5 ,6 ]
机构
[1] RMIT Univ, Sch Elect & Comp Engn, Melbourne, Vic 3001, Australia
[2] RMIT Univ, ARC Ctr Excellence Ultrahigh Bandwidth Devices Op, Melbourne, Vic 3001, Australia
[3] Univ Lille 1, CNRS, Inst Elect Microelect & Nanotechnol, UMR 8520, F-59655 Villeneuve Dascq, France
[4] RMIT Univ, Micro Nanophys Res Lab, Melbourne, Vic 3001, Australia
[5] RMIT Univ, Micro Nano Res Facil, Melbourne, Vic 3001, Australia
[6] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
关键词
SOUND-ATTENUATION; WAVES;
D O I
10.1103/PhysRevLett.113.215503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Phonon-polariton in two-dimensional piezoelectric phononic crystals
    Yang, Ming-Yi
    Wu, Liang-Chieh
    Tseng, Jiun-Yi
    PHYSICS LETTERS A, 2008, 372 (26) : 4730 - 4735
  • [2] Phonon-polariton entrapment in homogenous surface phonon cavities
    Yudistira, Didit
    Boes, Andreas
    Dumas, Benjamin
    Rezk, Amgad R.
    Yousefi, Morteza
    Djafari-Rouhani, Bahram
    Yeo, Leslie Y.
    Mitchell, Arnan
    ANNALEN DER PHYSIK, 2016, 528 (05) : 365 - 372
  • [3] Modulation of electromagnetic local density of states by coupling of surface phonon-polariton
    Li, Yao
    Zhang, Chao-Jie
    Wang, Tong-Biao
    Liu, Jiang-Tao
    Yu, Tian-Bao
    Liao, Qing-Hua
    Liu, Nian-Hua
    MODERN PHYSICS LETTERS B, 2017, 31 (06):
  • [4] Transition from surface phonon-polariton to surface phonon-plasmon-polariton by thermal injection of free carriers
    El-Helou, Y.
    Wu, K-T
    Bruyant, A.
    Woon, W-Y
    Kazan, M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (26)
  • [5] Phonon-polariton waves on the surface of SiC crystal
    D. V. Kazantsev
    Journal of Experimental and Theoretical Physics Letters, 2006, 83 : 323 - 326
  • [6] Phonon-polariton waves on the surface of SiC crystal
    Kazantsev, D. V.
    JETP LETTERS, 2006, 83 (08) : 323 - 326
  • [7] Phonon-polariton dispersion and the polariton-based photonic band gap in piezoelectric superlattices
    Zhang, XJ
    Zhu, RQ
    Zhao, J
    Chen, YF
    Zhu, YY
    PHYSICAL REVIEW B, 2004, 69 (08)
  • [8] Tunable dual-band mid-infrared absorber based on the coupling of a graphene surface plasmon polariton and Tamm phonon-polariton
    Han, Jing
    Shao, Yabin
    Chen, Chunyu
    Wang, Jun
    Gao, Yang
    Gao, Yachen
    OPTICS EXPRESS, 2021, 29 (10) : 15228 - 15238
  • [9] Phonon-polariton Bragg generation at the surface of silicon carbide
    Ivchenko, V. S.
    Kazantsev, D. V.
    Ievleva, V. A.
    Kazantseva, E. A.
    Kuntsevich, A. Yu.
    APPLIED PHYSICS LETTERS, 2024, 125 (17)
  • [10] Thermal energy transport in a surface phonon-polariton crystal
    Ordonez-Miranda, Jose
    Tranchant, Laurent
    Joulain, Karl
    Ezzahri, Younes
    Drevillon, Jeremie
    Volz, Sebastian
    PHYSICAL REVIEW B, 2016, 93 (03)