Towards a Precision Medicine Approach Based on Machine Learning for Tailoring Medical Treatment in Alkaptonuria

被引:11
作者
Spiga, Ottavia [1 ]
Cicaloni, Vittoria [2 ]
Visibelli, Anna [1 ]
Davoli, Alessandro [3 ]
Paparo, Maria Ausilia [3 ]
Orlandini, Maurizio [1 ]
Vecchi, Barbara [3 ]
Santucci, Annalisa [1 ]
机构
[1] Univ Siena, Dept Biotechnol Chem & Pharm, I-53100 Siena, Italy
[2] Toscana Life Sci Fdn, I-53100 Siena, Italy
[3] Hopenly Srl, I-41058 Vignola, Italy
关键词
alkaptonuria; rare disease; machine learning; precision medicine; data analysis; QoL scores; MODEL;
D O I
10.3390/ijms22031187
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ApreciseKUre is a multi-purpose digital platform facilitating data collection, integration and analysis for patients affected by Alkaptonuria (AKU), an ultra-rare autosomal recessive genetic disease. It includes genetic, biochemical, histopathological, clinical, therapeutic resources and quality of life scores that can be shared among registered researchers and clinicians in order to create a Precision Medicine Ecosystem (PME). The combination of machine learning application to analyse and re-interpret data available in the ApreciseKUre shows the potential direct benefits to achieve patient stratification and the consequent tailoring of care and treatments to a specific subgroup of patients. In this study, we have developed a tool able to investigate the most suitable treatment for AKU patients in accordance with their Quality of Life scores, which indicates changes in health status before/after the assumption of a specific class of drugs. This fact highlights the necessity of development of patient databases for rare diseases, like ApreciseKUre. We believe this is not limited to the study of AKU, but it represents a proof of principle study that could be applied to other rare diseases, allowing data management, analysis, and interpretation.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 26 条
  • [1] Building the foundation for genomics in precision medicine
    Aronson, Samuel J.
    Rehm, Heidi L.
    [J]. NATURE, 2015, 526 (7573) : 336 - 342
  • [2] Homogentisate 1,2-dioxygenase (HGD) gene variants, their analysis and genotype-phenotype correlations in the largest cohort of patients with AKU
    Ascher, David B.
    Spiga, Ottavia
    Sekelska, Martina
    Pires, Douglas E. V.
    Bernini, Andrea
    Tiezzi, Monica
    Kralovicova, Jana
    Borovska, Ivana
    Soltysova, Andrea
    Olsson, Birgitta
    Galderisi, Silvia
    Cicaloni, Vittoria
    Ranganath, Lakshminarayan
    Santucci, Annalisa
    Zatkova, Andrea
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 (06) : 888 - 902
  • [3] Precision Medicine
    Bahcall, Orli
    [J]. NATURE, 2015, 526 (7573) : 335 - 335
  • [4] Homogentisate 1,2 dioxygenase is expressed in brain: implications in alkaptonuria
    Bernardini, Giulia
    Laschi, Marcella
    Geminiani, Michela
    Braconi, Daniela
    Vannuccini, Elisa
    Lupetti, Pietro
    Manetti, Fabrizio
    Millucci, Lia
    Santucci, Annalisa
    [J]. JOURNAL OF INHERITED METABOLIC DISEASE, 2015, 38 (05) : 807 - 814
  • [5] Oxidative stress and mechanisms of ochronosis in alkaptonuria
    Braconi, Daniela
    Millucci, Lia
    Bernardini, Giulia
    Santucci, Annalisa
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 2015, 88 : 70 - 80
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
    Chicco, Davide
    Jurman, Giuseppe
    [J]. BMC GENOMICS, 2020, 21 (01)
  • [8] Ten quick tips for machine learning in computational biology
    Chicco, Davide
    [J]. BIODATA MINING, 2017, 10
  • [9] Cicaloni V., 2016, PEERJ PREPRINTS, V4, DOI DOI 10.7287/PEERJ.PREPRINTS.2174V1
  • [10] Interactive alkaptonuria database: investigating clinical data to improve patient care in a rare disease
    Cicaloni, Vittoria
    Spiga, Ottavia
    Dimitri, Giovanna Maria
    Maiocchi, Rebecca
    Millucci, Lia
    Giustarini, Daniela
    Bernardini, Giulia
    Bernini, Andrea
    Marzocchi, Barbara
    Braconi, Daniela
    Santucci, Annalisa
    [J]. FASEB JOURNAL, 2019, 33 (11) : 12696 - 12703