Interpreting experimental results using gene ontologies

被引:41
作者
Beissbarth, Tim [1 ]
机构
[1] Walter & Eliza Hall Inst Med Res, Bioinformat Grp, Melbourne, Vic, Australia
来源
DNA MICROARRAYS, PART B: DATABASES AND STATISTICS | 2006年 / 411卷
基金
英国医学研究理事会;
关键词
D O I
10.1016/S0076-6879(06)11018-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput experimental techniques, such as microarrays, produce large amounts of data and knowledge about gene expression levels. However, interpretation of these data and turning it into biologically meaningful knowledge can be challenging. Frequently the output of such an analysis is a list of significant genes or a ranked list of genes. In the case of DNA microarray studies, data analysis often leads to lists of hundreds of differentially expressed genes. Also, clustering of gene expression data may lead to clusters of tens to hundreds of genes. These data are of little use if one is not able to interpret the results in a biological context. The Gene Ontology Consortium provides a controlled vocabulary to annotate the biological knowledge we have or that is predicted for a given gene. The Gene Ontologies (GOs) are organized as a hierarchy of annotation terms that facilitate an analysis and interpretation at different levels. The top-level ontologies are molecular function, biological process, and cellular component. Several annotation databases for genes of different organisms exist. This chapter describes how to use GO in order to help biologically interpret the lists of genes resulting from high-throughput experiments. It describes some statistical methods to find significantly over- or under-represented GO terms within a list of genes and describes some tools and how to use them in order to do such an analysis. This chapter focuses primarily on the tool GOstat (http://gostat.wehi.edu.au). Other tools exist that enable similar analyses, but are not described in detail here.
引用
收藏
页码:340 / 352
页数:13
相关论文
共 42 条
  • [1] FatiGO:: a web tool for finding significant associations of Gene Ontology terms with groups of genes
    Al-Shahrour, F
    Díaz-Uriarte, R
    Dopazo, J
    [J]. BIOINFORMATICS, 2004, 20 (04) : 578 - 580
  • [2] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [3] Analysis of variance of microarray data
    Ayroles, Julien F.
    Gibson, Greg
    [J]. DNA MICROARRAYS, PART B: DATABASES AND STATISTICS, 2006, 411 : 214 - +
  • [4] GOstat: find statistically overrepresented Gene Ontologies within a group of genes
    Beissbarth, T
    Speed, TP
    [J]. BIOINFORMATICS, 2004, 20 (09) : 1464 - 1465
  • [5] Analysis of CREM-dependent gene expression during mouse spermatogenesis
    Beissbarth, T
    Borisevich, I
    Hörlein, A
    Kenzelmann, M
    Hergenhahn, M
    Klewe-Nebenius, A
    Klären, R
    Kom, B
    Schmid, W
    Vingron, M
    Schütz, G
    [J]. MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2003, 212 (1-2) : 29 - 39
  • [6] Beissbarth T, 2000, BIOINFORMATICS, V16, P1014
  • [7] Statistical modeling of sequencing errors in SAGE libraries
    Beissbarth, Tim
    Hyde, Lavinia
    Smyth, Gordon K.
    Job, Chris
    Boon, Wee-Ming
    Tan, Seong-Seng
    Scott, Hamish S.
    Speed, Terence P.
    [J]. BIOINFORMATICS, 2004, 20 : 31 - 39
  • [8] Benjamini Y, 2001, ANN STAT, V29, P1165
  • [9] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [10] MGD: the Mouse Genome Database
    Blake, JA
    Richardson, JE
    Bult, RJ
    Kadin, JA
    Eppig, JT
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (01) : 193 - 195