Limit Cycles of Piecewise Smooth Differential Equations on Two Dimensional Torus

被引:2
|
作者
Llibre, Jaume [1 ]
Martins, Ricardo Miranda [2 ]
Tonon, Durval Jose [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] IMECC UNICAMP, BR-13083859 Campinas, SP, Brazil
[3] Univ Fed Goias, Inst Math & Stat, Ave Esperanca S-N,Campus Samambaia, BR-74690900 Goiania, Go, Brazil
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth differential equations; Limit cycles; Global dynamics in torus; DYNAMICS; SYSTEMS;
D O I
10.1007/s10884-017-9584-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the limit cycles of some classes of piecewise smooth vector fields defined in the two dimensional torus. The piecewise smooth vector fields that we consider are composed by linear, Ricatti with constant coefficients and perturbations of these one, which are given in (3). Considering these piecewise smooth vector fields we characterize the global dynamics, studying the upper bound of number of limit cycles, the existence of non-trivial recurrence and a continuum of periodic orbits. We also present a family of piecewise smooth vector fields that posses a finite number of fold points and, for this family we prove that for any 2k number of limit cycles there exists a piecewise smooth vector fields in this family that presents k number of limit cycles and prove that some classes of piecewise smooth vector fields presents a non-trivial recurrence or a continuum of periodic orbits.
引用
收藏
页码:1011 / 1027
页数:17
相关论文
共 50 条
  • [31] On Stability Discrimination of Limit Cycles for Piecewise Smooth Systems
    Han, Mao An
    Zhou, Xia Yu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (07) : 1785 - 1803
  • [32] Bifurcation of Limit Cycles of a Piecewise Smooth Hamiltonian System
    Yang, Jihua
    Zhao, Liqin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [33] On Stability Discrimination of Limit Cycles for Piecewise Smooth Systems
    Mao An HAN
    Xia Yu ZHOU
    Acta Mathematica Sinica,English Series, 2024, (07) : 1785 - 1803
  • [34] Limit Cycles of a Class of Piecewise Smooth Lienard Systems
    Sheng, Lijuan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (01):
  • [35] Bifurcation of Limit Cycles of a Piecewise Smooth Hamiltonian System
    Jihua Yang
    Liqin Zhao
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [36] Limit cycles for m-piecewise discontinuous polynomial Li,nard differential equations
    Llibre, Jaume
    Teixeira, Marco Antonio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (01): : 51 - 66
  • [37] Note on limit cycles for m-piecewise discontinuous polynomial Lienard differential equations
    Dong, Guangfeng
    Liu, Changjian
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (04):
  • [38] Limit cycles for m-piecewise discontinuous polynomial Liénard differential equations
    Jaume Llibre
    Marco Antonio Teixeira
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 51 - 66
  • [39] Low-discrepancy sequences for piecewise smooth functions on the two-dimensional torus
    Brandolini, Luca
    Colzani, Leonardo
    Gigante, Giacomo
    Travaglini, Giancarlo
    JOURNAL OF COMPLEXITY, 2016, 33 : 1 - 13
  • [40] Uniqueness of the limit cycles for complex differential equations with two monomials
    alvarez, M. J.
    Gasull, A.
    Prohens, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (01)