Chemical synthesis of Co and Mn co-doped NiO nanocrystalline materials as high-performance electrode materials for potential application in supercapacitors

被引:61
|
作者
Srikesh, G. [1 ]
Nesaraj, A. Samson [1 ]
机构
[1] Karunya Univ, Dept Chem, Sch Sci & Humanities, Coimbatore 641114, Tamil Nadu, India
关键词
Chemical synthesis; Alternate electrode materials; Physico-chemical and electrochemical characterization; Supercapacitors; FACILE SYNTHESIS; GRAPHENE; NANOSHEETS; NICKEL; CARBON; NANOSPHERES; FOAM;
D O I
10.1016/j.ceramint.2015.12.013
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Co and Mn co-doped with NiO nanostructued materials, such as, Ni0.95Co0.01Mn0.04O1-delta, Ni0.95Co0.025Mn0.025O1-delta and Ni0.95Co0.025Mn0.025O1-delta were synthesized by chemical synthesis route and studied for potential application as electrode materials for supercapacitors. The phase structure of the materials was characterized by X-ray diffraction (XRD) and the crystallographic parameters were found out and reported. FIIR (Fourier Transform Infrared) spectroscopy revealed the presence of M-O bond in the compounds. The particle size of the materials was found to be in the range of 291.5-336.5 nm. The morphological phenomenon of the materials was studied by scanning electron microscopy (SEM) and the particles were found to be in spherical shape with average grain size of 14-28 nm. EDAX analysis confirmed the presence of appropriate levels of elements in the samples. The in-depth morphological characteristics were also studied by HR-TEM (High Resolution Tunneling Electron Microscopy). Cyclic voltammetry, chronopotentiometry and electrochemical impedance measurements were applied in an aqueous electrolyte (6 mol L-1 KOH) to investigate the electrochemical performance of the Co and Mn co-doped NiO nanostructured electrode materials. The results indicate that the doping level of Co and Mn in NiO had a significant role in revealing the capacitive behaviors of the materials. Among the three electrode materials studied, Ni0.95Co0.025Mn0.025O1-delta electrode material shows a maximum specific capacitance of 673.33 F g(-1) at a current density of 0.5 A g(-1). The electrochemical characteristics of blank graphite sheet were studied and compared with the performance of Co/Mn co-doped NiO based electrode materials. Also, Ni0.95Co0.025Mn0.025O1-delta has resulted in a degradation level of 4.76% only after 1000 continuous cycles, which shows its excellent electrochemical performance, indicating a kind of potential candidate for supercapacitors. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:5001 / 5010
页数:10
相关论文
共 50 条
  • [1] Wet Chemical Synthesis of Graphene Containing Co/Mn Co-Doped NiONanocrystalline Materials: Efficient Electrode for Electrochemical Supercapacitors
    Srikesh, G.
    Nesaraj, A. Samson
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2021, 40 (05): : 1406 - 1413
  • [2] Mn doped Co(OH)2 nanosheets as electrode materials for high performance supercapacitors
    Zhao, Chenglan
    Liang, Shunfei
    Jiang, Yuqian
    Gao, Fang
    Xie, Li
    Chen, Lingyun
    MATERIALS LETTERS, 2020, 270 (270)
  • [3] Nitrogen and sulfur co-doped hierarchical graphene hydrogel for high-performance electrode materials
    Fei Dang
    Wei Zhao
    Pengfei Yang
    Huaping Wu
    Yilun Liu
    Journal of Applied Electrochemistry, 2020, 50 : 463 - 473
  • [4] Nitrogen and sulfur co-doped hierarchical graphene hydrogel for high-performance electrode materials
    Dang, Fei
    Zhao, Wei
    Yang, Pengfei
    Wu, Huaping
    Liu, Yilun
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2020, 50 (04) : 463 - 473
  • [5] N/O co-doped microporous carbon as a high-performance electrode for supercapacitors
    Yan, Jing-jing
    Fang, Xiao-hao
    Yao, De-zhou
    Zhu, Cheng-wei
    Shi, Jian-jun
    Qian, Shan-shan
    NEW CARBON MATERIALS, 2025, 40 (01) : 231 - 242
  • [6] Synthesis and Characterization of Hierarchical NiO/Ni-Co-Mn Oxide Nanocomposite Materials for High Performance Supercapacitors
    Qin, Ziyang
    Xu, Ruidong
    Yu, Bohao
    Wang, Wenbin
    Zhang, Ying
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (03): : 2999 - 3010
  • [7] N/O co-doped edamame shell derived porous carbon materials for high-performance supercapacitors
    Wang, Yuanyuan
    Xia, Yingjing
    Dong, Xingshen
    Wang, Wenyi
    Wang, Xueqin
    Liu, Yanxiu
    Qiao, Peng
    Zhang, Geng
    Liu, Shetian
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (46) : 19508 - 19518
  • [8] Facile synthesis of N, P co-doped carbon materials derived from corn bract for high-performance symmetric supercapacitors
    Zheng, Jinfeng
    Cao, Tianlong
    Ding, Baopeng
    Zhang, Xiaohui
    Wu, Hao
    Li, Xinran
    JOURNAL OF ENERGY STORAGE, 2025, 110
  • [9] N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials
    Wei, Yu-Chen
    Zhou, Jian
    Yang, Lei
    Gu, Jing
    Chen, Zhi-Peng
    He, Xiao-Jun
    NEW CARBON MATERIALS, 2022, 37 (04) : 707 - 715
  • [10] One-step synthesis of self-standing porous Co-doped NiO electrodes for high-performance supercapacitors
    Liu, Yang
    Liu, Shuming
    Wang, Xiaoyu
    Sun, Xinhao
    Li, Yongyan
    Wang, Zhifeng
    Li, Jia
    Zhao, Feng
    Qin, Chunling
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 934