Homoclinic orbits for a singular second-order neutral differential equation

被引:35
作者
Guo, Chengjun [2 ]
O'Regan, Donal [3 ]
Xu, Yuantong [4 ]
Agarwal, Ravi P. [1 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Guangdong Univ Technol, Sch Appl Math, Guangzhou 510006, Guangdong, Peoples R China
[3] Natl Univ Ireland, Dept Math, Galway, Ireland
[4] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
Homoclinic orbit; Neutral differential equations; Singular function; Critical point; Minimax argument; HAMILTONIAN-SYSTEMS; PERIODIC-SOLUTIONS; DELAY EQUATIONS; EXISTENCE;
D O I
10.1016/j.jmaa.2009.12.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using critical point theory and an approximation method, we study the existence of homoclinic orbits for a singular second-order neutral differential difference equations. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:550 / 560
页数:11
相关论文
共 30 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
Ambrosetti A., 1993, REND SEMIN MAT U PAD, V89, P177, DOI DOI 10.1016/0165-0114(92)90069-G
[3]  
[Anonymous], MATH Z
[4]  
[Anonymous], 1986, MINIMAX METHODS CRIT
[5]   Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems [J].
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (01) :157-172
[6]  
Coti-Zelati V, 1991, J AM MATH SOC, V4, P693
[7]   Homoclinic orbits for a nonperiodic Hamiltonian system [J].
Ding, Yanheng ;
Jeanjean, Louis .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (02) :473-490
[8]   HOMOCLINIC ORBITS FOR FIRST-ORDER HAMILTONIAN-SYSTEMS [J].
DING, YH ;
LI, SJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (02) :585-601
[10]   Homoclinic orbits of a Hamiltonian system [J].
Ding, YH ;
Willem, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (05) :759-778