Clustering based Segmentation of MR Images for the Delineation and Monitoring of Multiple Sclerosis Progression

被引:2
作者
Zelilidou, Styliani P. [1 ]
Tripoliti, Evanthia E. [1 ]
Vlachos, Kostas, I [2 ]
Konitsiotis, Spyridon [3 ]
Fotiadis, Dimitrios, I [1 ,4 ]
机构
[1] Univ Ioannina, Unit Med Technol & Intelligent Informat Syst, Dept Mat Sci & Engn, Ioannina, Greece
[2] Ippokratio Ioanninon SA, Ioannina, Greece
[3] Univ Ioannina, Med Sch, Dept Neurol, Ioannina, Greece
[4] FORTH, IMBB, Ioannina, Greece
来源
2021 IEEE 21ST INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (IEEE BIBE 2021) | 2021年
关键词
Multiple Sclerosis; Brain MRI; Brain atrophy estimation;
D O I
10.1109/BIBE52308.2021.9635369
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a clustering-based method for the detection of Multiple Sclerosis (MS) lesions, by including anatomical information, brain geometry and lesion features, while volume quantification is performed. The proposed method utilizes Fluid Attenuated Inversion Recovery (FLAIR) images for the delineation of the plaques and brain atrophy estimation. The methodology includes five steps: (i) image preprocessing, (ii) image segmentation utilizing the K-means clustering algorithm, (iii) post processing for elimination of false positives, (iv) delineation and visualization of the MS lesions, and (v) brain atrophy estimation. It is implemented in two different datasets; (a) a dataset of 3D FLAIR MR Images, acquired in 30 MS patients, and (b) a dataset of 15 FLAIR MR Images, provided by the MICCAI Challenge 2016. A sensitivity 73.80%, and 71.52% was achieved for the two datasets, respectively. Brain atrophy was determined only on the first dataset, since follow up scans are available.
引用
收藏
页数:4
相关论文
共 12 条
[1]  
Ameli, 2016, MSSEG CHALL P MULTIP
[2]   Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure [J].
Commowick, Olivier ;
Istace, Audrey ;
Kain, Michael ;
Laurent, Baptiste ;
Leray, Florent ;
Simon, Mathieu ;
Pop, Sorina Camarasu ;
Girard, Pascal ;
Ameli, Roxana ;
Ferre, Jean-Christophe ;
Kerbrat, Anne ;
Tourdias, Thomas ;
Cervenansky, Frederic ;
Glatard, Tristan ;
Beaumont, Jeremy ;
Doyle, Senan ;
Forbes, Florence ;
Knight, Jesse ;
Khademi, April ;
Mahbod, Amirreza ;
Wang, Chunliang ;
McKinley, Richard ;
Wagner, Franca ;
Muschelli, John ;
Sweeney, Elizabeth ;
Roura, Eloy ;
Llado, Xavier ;
Santos, Michel M. ;
Santos, Wellington P. ;
Silva-Filho, Abel G. ;
Tomas-Fernandez, Xavier ;
Urien, Helene ;
Bloch, Isabelle ;
Valverde, Sergi ;
Cabezas, Mariano ;
Javier Vera-Olmos, Francisco ;
Malpica, Norberto ;
Guttmann, Charles ;
Vukusic, Sandra ;
Edan, Gilles ;
Dojat, Michel ;
Styner, Martin ;
Warfield, Simon K. ;
Cotton, Francois ;
Barillot, Christian .
SCIENTIFIC REPORTS, 2018, 8
[3]   Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging [J].
Danelakis, Antonios ;
Theoharis, Theoharis ;
Verganelakis, Dimitrios A. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 70 :83-100
[4]   Immunopathology of multiple sclerosis [J].
Dendrou, Calliope A. ;
Fugger, Lars ;
Friese, Manuel A. .
NATURE REVIEWS IMMUNOLOGY, 2015, 15 (09) :545-558
[5]  
Isoglu S., 2017, 2017 EBBT, P1
[6]   State-of-the-Art Segmentation Techniques and Future Directions for Multiple Sclerosis Brain Lesions [J].
Kaur, Amrita ;
Kaur, Lakhwinder ;
Singh, Ashima .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (03) :951-977
[7]   Image contrast enhancement through regional application of partitioned iterated function systems [J].
Koutsouri, Georgia D. ;
Economopoulos, Theodore L. ;
Matsopoulos, George K. .
JOURNAL OF ELECTRONIC IMAGING, 2013, 22 (01)
[8]   MRI denoising using Non-Local Means [J].
Manjon, Jose V. ;
Carbonell-Caballero, Jose ;
Lull, Juan J. ;
Garcia-Marti, Gracian ;
Marti-Bonmati, Luis ;
Robles, Montserrat .
MEDICAL IMAGE ANALYSIS, 2008, 12 (04) :514-523
[9]  
Mitchel T., 1997, MACH LEARN
[10]  
Soille P., 2004, MORPHOLOGICAL IMAGE, V2nd ed., DOI [10.1007/978-3-662-05088-0, DOI 10.1007/978-3-662-05088-0]