Data imputation and machine learning improve association analysis and genomic prediction for resistance to fish photobacteriosis in the gilthead sea bream

被引:18
作者
Bargelloni, Luca [1 ]
Tassiello, Oronzo [1 ]
Babbucci, Massimiliano [1 ]
Ferraresso, Serena [1 ]
Franch, Rafaella [1 ]
Montanucci, Ludovica [1 ]
Carnier, Paolo [1 ]
机构
[1] Univ Padua, Sch Agr & Vet Med, Dept Comparat Biomed & Food Sci, I-35020 Legnaro, Italy
关键词
Disease resistance; Genomic prediction; Data imputation; Machine learning; Sea bream; SELECTION;
D O I
10.1016/j.aqrep.2021.100661
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Disease resistance represents a key trait for breeding programs in aquaculture species. Here we re-analysed 2bRAD sequence data from two experimental challenges of gilthead sea bream with Photobacterium damsealae piscicida. Using a high quality reference genome, we carried out variant calling and data imputation with Beagle to obtain a large set of SNPs (80,744). This allowed the identification of eight novel QTLs for resistance to photobacteriosis across different chromosomes and revealed a highly polygenic genetic architecture. Bayesian regression approaches and machine learning methods (support vector machines and linear bagging) were compared to evaluate relative performance to classify susceptible-resistant individuals. Both data sets showed higher Matthew Correlation Coefficient (MCC) and accuracy values for machine learning methods, particularly linear bagging, with 20-70 % increase in prediction performance. Overall, machine learning methods should be explored in parallel with parametric regression approaches to increase the chances of highly effective genomic prediction.
引用
收藏
页数:6
相关论文
共 27 条
  • [1] Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes
    Abdollahi-Arpanahi, Rostam L.
    Gianola, Daniel
    Penagaricano, Francisco
    [J]. GENETICS SELECTION EVOLUTION, 2020, 52 (01)
  • [2] Photobacteriosis: Prevention and Diagnosis
    Andreoni, Francesca
    Magnani, Mauro
    [J]. JOURNAL OF IMMUNOLOGY RESEARCH, 2014, 2014
  • [3] Harnessing the power of RADseq for ecological and evolutionary genomics
    Andrews, Kimberly R.
    Good, Jeffrey M.
    Miller, Michael R.
    Luikart, Gordon
    Hohenlohe, Paul A.
    [J]. NATURE REVIEWS GENETICS, 2016, 17 (02) : 81 - 92
  • [4] Genetics of resistance to photobacteriosis in gilthead sea bream (Sparus aurata) using 2b-RAD sequencing
    Aslam, Muhammad L.
    Carraro, Roberta
    Bestin, Anastasia
    Cariou, Sophie
    Sonesson, Anna K.
    Bruant, Jean-Sebastien
    Haffray, Pierrick
    Bargelloni, Luca
    Meuwissen, Theo H. E.
    [J]. BMC GENETICS, 2018, 19
  • [5] Genotype Imputation with Millions of Reference Samples
    Browning, Brian L.
    Browning, Sharon R.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 98 (01) : 116 - 126
  • [6] A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry
    Chavanne, Herve
    Janssen, Kasper
    Hofherr, Johann
    Contini, Franca
    Haffray, Pierrick
    Komen, Hans
    Nielsen, Einar Eg
    Bargelloni, Luca
    [J]. AQUACULTURE INTERNATIONAL, 2016, 24 (05) : 1287 - 1307
  • [7] Different models of genetic variation and their effect on genomic evaluation
    Clark, Samuel A.
    Hickey, John M.
    van der Werf, Julius H. J.
    [J]. GENETICS SELECTION EVOLUTION, 2011, 43
  • [8] Genomic selection: prediction of accuracy and maximisation of long term response
    Goddard, Mike
    [J]. GENETICA, 2009, 136 (02) : 245 - 257
  • [9] Harnessing genomics to fast-track genetic improvement in aquaculture
    Houston, Ross D.
    Bean, Tim P.
    Macqueen, Daniel J.
    Gundappa, Manu Kumar
    Jin, Ye Hwa
    Jenkins, Tom L.
    Selly, Sarah Louise C.
    Martin, Samuel A. M.
    Stevens, Jamie R.
    Santos, Eduarda M.
    Davie, Andrew
    Robledo, Diego
    [J]. NATURE REVIEWS GENETICS, 2020, 21 (07) : 389 - 409
  • [10] Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures
    Howard, Reka
    Carriquiry, Alicia L.
    Beavis, William D.
    [J]. G3-GENES GENOMES GENETICS, 2014, 4 (06): : 1027 - 1046