Data imputation and machine learning improve association analysis and genomic prediction for resistance to fish photobacteriosis in the gilthead sea bream

被引:19
作者
Bargelloni, Luca [1 ]
Tassiello, Oronzo [1 ]
Babbucci, Massimiliano [1 ]
Ferraresso, Serena [1 ]
Franch, Rafaella [1 ]
Montanucci, Ludovica [1 ]
Carnier, Paolo [1 ]
机构
[1] Univ Padua, Sch Agr & Vet Med, Dept Comparat Biomed & Food Sci, I-35020 Legnaro, Italy
关键词
Disease resistance; Genomic prediction; Data imputation; Machine learning; Sea bream; SELECTION;
D O I
10.1016/j.aqrep.2021.100661
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Disease resistance represents a key trait for breeding programs in aquaculture species. Here we re-analysed 2bRAD sequence data from two experimental challenges of gilthead sea bream with Photobacterium damsealae piscicida. Using a high quality reference genome, we carried out variant calling and data imputation with Beagle to obtain a large set of SNPs (80,744). This allowed the identification of eight novel QTLs for resistance to photobacteriosis across different chromosomes and revealed a highly polygenic genetic architecture. Bayesian regression approaches and machine learning methods (support vector machines and linear bagging) were compared to evaluate relative performance to classify susceptible-resistant individuals. Both data sets showed higher Matthew Correlation Coefficient (MCC) and accuracy values for machine learning methods, particularly linear bagging, with 20-70 % increase in prediction performance. Overall, machine learning methods should be explored in parallel with parametric regression approaches to increase the chances of highly effective genomic prediction.
引用
收藏
页数:6
相关论文
共 27 条
[1]   Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes [J].
Abdollahi-Arpanahi, Rostam L. ;
Gianola, Daniel ;
Penagaricano, Francisco .
GENETICS SELECTION EVOLUTION, 2020, 52 (01)
[2]   Photobacteriosis: Prevention and Diagnosis [J].
Andreoni, Francesca ;
Magnani, Mauro .
JOURNAL OF IMMUNOLOGY RESEARCH, 2014, 2014
[3]   Harnessing the power of RADseq for ecological and evolutionary genomics [J].
Andrews, Kimberly R. ;
Good, Jeffrey M. ;
Miller, Michael R. ;
Luikart, Gordon ;
Hohenlohe, Paul A. .
NATURE REVIEWS GENETICS, 2016, 17 (02) :81-92
[4]   Genetics of resistance to photobacteriosis in gilthead sea bream (Sparus aurata) using 2b-RAD sequencing [J].
Aslam, Muhammad L. ;
Carraro, Roberta ;
Bestin, Anastasia ;
Cariou, Sophie ;
Sonesson, Anna K. ;
Bruant, Jean-Sebastien ;
Haffray, Pierrick ;
Bargelloni, Luca ;
Meuwissen, Theo H. E. .
BMC GENETICS, 2018, 19
[5]   Genotype Imputation with Millions of Reference Samples [J].
Browning, Brian L. ;
Browning, Sharon R. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2016, 98 (01) :116-126
[6]   A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry [J].
Chavanne, Herve ;
Janssen, Kasper ;
Hofherr, Johann ;
Contini, Franca ;
Haffray, Pierrick ;
Komen, Hans ;
Nielsen, Einar Eg ;
Bargelloni, Luca .
AQUACULTURE INTERNATIONAL, 2016, 24 (05) :1287-1307
[7]   Different models of genetic variation and their effect on genomic evaluation [J].
Clark, Samuel A. ;
Hickey, John M. ;
van der Werf, Julius H. J. .
GENETICS SELECTION EVOLUTION, 2011, 43
[8]   Genomic selection: prediction of accuracy and maximisation of long term response [J].
Goddard, Mike .
GENETICA, 2009, 136 (02) :245-257
[9]   Harnessing genomics to fast-track genetic improvement in aquaculture [J].
Houston, Ross D. ;
Bean, Tim P. ;
Macqueen, Daniel J. ;
Gundappa, Manu Kumar ;
Jin, Ye Hwa ;
Jenkins, Tom L. ;
Selly, Sarah Louise C. ;
Martin, Samuel A. M. ;
Stevens, Jamie R. ;
Santos, Eduarda M. ;
Davie, Andrew ;
Robledo, Diego .
NATURE REVIEWS GENETICS, 2020, 21 (07) :389-409
[10]   Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures [J].
Howard, Reka ;
Carriquiry, Alicia L. ;
Beavis, William D. .
G3-GENES GENOMES GENETICS, 2014, 4 (06) :1027-1046