Prediction of electrical properties of FDSOI devices based on deep learning

被引:3
作者
Zhao, Rong [1 ]
Wang, Shulong [1 ]
Duan, Xiaoling [1 ]
Liu, Chenyu [1 ]
Ma, Lan [1 ]
Chen, Shupeng [1 ]
Liu, Hongxia [1 ]
机构
[1] Xidian Univ, Sch Microelect, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; neural networks; FDSOI devices; electrical properties; transfer characteristic;
D O I
10.1088/1361-6528/ac6c95
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Fully depleted Silicon on insulator technology (FDSOI) is proposed to solve the various non-ideal effects when the process size of integrated circuits is reduced to 45 nm. The research of traditional FDSOI devices is mostly based on simulation software, which requires a lot of calculation and takes a long time. In this paper, a deep learning (DL) based electrical characteristic prediction method for FDSOI devices is proposed. DL algorithm is used to train the simulation data and establish the relationship between the physical parameters and electrical characteristics of the device. The network structure used in the experiment has high prediction accuracy. The mean square error of electrical parameters and transfer characteristic curve is only 4.34 x 10(-4) and 2.44 x 10(-3) respectively. This method can quickly and accurately predict the electrical characteristics of FDSOI devices without microelectronic expertise. In addition, this method can be extended to study the effects of various physical variables on device performance, which provides a new research method for the field of microelectronics.
引用
收藏
页数:8
相关论文
共 31 条
  • [1] [Anonymous], 2008, P 25 INT C MACH LEAR
  • [2] FDSOI and Bulk CMOS SRAM Cell Resilience to Radiation Effects
    Bartra, W. E. Calienes
    Vladimirescu, A.
    Reis, R.
    [J]. MICROELECTRONICS RELIABILITY, 2016, 64 : 152 - 157
  • [3] Reliability of ultra-thin buried oxides for multi-VT FDSOI technology
    Besnard, G.
    Garros, X.
    Nguyen, P.
    Andrieu, F.
    Reynaud, P.
    Van Den Daele, W.
    Bourdelle, K. K.
    Schwarzenbach, W.
    Toffoli, A.
    Kies, R.
    Delprat, D.
    Reimbold, G.
    Cristoloveanu, S.
    [J]. SOLID-STATE ELECTRONICS, 2014, 97 : 8 - 13
  • [4] Breakdown Voltage Prediction of SOI Lateral Power Device Using Deep Neural Network
    Chen, Jing
    Guo, Yufeng
    Lin, Yibo
    Alawieh, Mohamed Baker
    Zhang, Maolin
    Zhang, Jun
    Pan, David Z.
    [J]. 2019 CROSS STRAIT QUAD-REGIONAL RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE (CSQRWC), 2019,
  • [5] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107
  • [6] Physics-informed neural networks for inverse problems in nano-optics and metamaterials
    Chen, Yuyao
    Lu, Lu
    Karniadakis, George Em
    Dal Negro, Luca
    [J]. OPTICS EXPRESS, 2020, 28 (08) : 11618 - 11633
  • [7] Deep Learning: Methods and Applications
    Deng, Li
    Yu, Dong
    [J]. FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2013, 7 (3-4): : I - 387
  • [8] A multimodal deep learning framework for predicting drug-drug interaction events
    Deng, Yifan
    Xu, Xinran
    Qiu, Yang
    Xia, Jingbo
    Zhang, Wen
    Liu, Shichao
    [J]. BIOINFORMATICS, 2020, 36 (15) : 4316 - 4322
  • [9] 28-nm FDSOI nMOSFET RF Figures of Merits and Parasitic Elements Extraction at Cryogenic Temperature Down to 77 K
    Esfeh, Babak Kazemi
    Kilchytska, Valeriya
    Planes, N.
    Haond, M.
    Flandre, Denis
    Raskin, Jean-Pierre
    [J]. IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2019, 7 (01) : 810 - 816
  • [10] FDSOI devices with thin BOX and ground plane integration for 32 nm node and below
    Fenouillet-Beranger, C.
    Denorme, S.
    Perreau, P.
    Buj, C.
    Faynot, O.
    Andrieu, F.
    Tosti, L.
    Barnola, S.
    Salvetat, T.
    Garros, X.
    Casse, M.
    Allain, F.
    Loubet, N.
    Pham-Nguyen, L.
    Deloffre, E.
    Gros-Jean, M.
    Beneyton, R.
    Laviron, C.
    Marin, M.
    Leyris, C.
    Haendler, S.
    Leverd, F.
    Gouraud, P.
    Scheiblin, P.
    Clement, L.
    Pantel, R.
    Deleonibus, S.
    Skotnicki, T.
    [J]. SOLID-STATE ELECTRONICS, 2009, 53 (07) : 730 - 734