New complexiton solutions of the nonlinear evolution equations using a generalized rational expansion method with symbolic computation

被引:5
作者
Song, Lina [1 ]
Zhang, Hongqing [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
关键词
nonlinear evolution equations; generalized ansatz; complexiton solutions; (2+1)-dimensional burgers equation;
D O I
10.1016/j.amc.2007.01.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study complexiton solutions of nonlinear evolution equations by using a generalized ansatz. With the help of symbolic computation Maple, we obtain new types of complexiton solutions of the (2 + 1)-dimensional Burgers equation. The solutions contain the combination of hyperbolic function and elliptic function, trigonometric function and elliptic function. (C) 2007 Published by Elsevier Inc.
引用
收藏
页码:974 / 986
页数:13
相关论文
共 26 条
[1]  
[Anonymous], 1991, LONDON MATH SOC LECT
[2]   New exact solutions for some nonlinear differential equations using symbolic computation [J].
Chen, Y ;
Zheng, XD ;
Li, B ;
Zhang, HQ .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 149 (01) :277-298
[3]   Auto-Backlund transformation and exact solutions for modified nonlinear dispersive mK(m, n) equations [J].
Chen, Y ;
Li, B ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2003, 17 (04) :693-698
[4]  
CLARKSON PA, 1989, J MATH PHYS, V30, P2202
[5]   PAINLEVE ANALYSIS AND BACKLUND TRANSFORMATION IN THE KURAMOTO-SIVASHINSKY EQUATION [J].
CONTE, R ;
MUSETTE, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (02) :169-177
[6]   Modified extended tanh-function method for solving nonlinear partial differential equations [J].
Elwakil, SA ;
El-labany, SK ;
Zahran, MA ;
Sabry, R .
PHYSICS LETTERS A, 2002, 299 (2-3) :179-188
[7]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[8]   Soliton solutions for the new complex version of a coupled KdV equation and a coupled MKdV equation [J].
Fan, EG ;
Chao, L .
PHYSICS LETTERS A, 2001, 285 (5-6) :373-376
[9]   Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics [J].
Gao, YT ;
Tian, B .
COMPUTER PHYSICS COMMUNICATIONS, 2001, 133 (2-3) :158-164
[10]  
Hirota R., 2004, DIRECT METHOD SOLITO, DOI [10.1017/CBO9780511543043, DOI 10.1017/CBO9780511543043]