On Hastings' Counterexamples to the Minimum Output Entropy Additivity Conjecture

被引:37
作者
Brandao, Fernando G. S. L. [1 ,2 ]
Horodecki, Michal [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2BW, England
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, QOLS, London SW7 2BW, England
[3] Univ Gdansk, Inst Theoret Phys & Astrophys, PL-80952 Gdansk, Poland
基金
英国工程与自然科学研究理事会;
关键词
CLASSICAL INFORMATION; QUANTUM; CAPACITY; ENTANGLEMENT; EQUIVALENCE; CHANNEL;
D O I
10.1142/S1230161210000047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hastings recently reported a randomized construction of channels violating the minimum output entropy additivity conjecture. Here we revisi this argument, presenting a simplified proof. In particular, we do not resort to the exact probability distribution of the Schmidt coefficients of a random bipartite pure state, as in the original proof, but rather derive the necessary large deviation bounds by a concentration of measure argument. Furthermore, we prove non-additivity for the overwhelming majority of channels consisting of a Haar random isometry followed by partial trace over the environment, for an environment dimension much bigger than the output dimension. This makes Hastings' original reasoning clearer and extends the class of channels for which additivity can be shown to be violated.
引用
收藏
页码:31 / 52
页数:22
相关论文
共 40 条
[1]  
Alicki R., ARXIVQUANTPH0407033
[2]  
[Anonymous], PROBL INFORM TRANSM
[3]  
[Anonymous], ARXIVQUANTPH0402080
[4]  
[Anonymous], ARXIV09053697
[5]  
[Anonymous], 1973, PROBLEMS INFORM TRAN
[6]  
Audenaert KMR, 2004, COMMUN MATH PHYS, V246, P443, DOI [10.1007/s00220-003-0987-1, 10.1007/s00220-003-0997-1]
[7]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[8]   Remarks on the equivalence of full additivity and monotonicity for the entanglement cost [J].
Brandao, F. G. S. L. ;
Horodecki, M. ;
Plenio, M. B. ;
Virmani, S. .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2007, 14 (03) :333-339
[9]  
COLLINS B, ARXIV09061877
[10]  
COLLINS B, ARXIV09052313