A characterization of random Bloch functions

被引:9
作者
Gao, FC [1 ]
机构
[1] Univ Idaho, Dept Math, Moscow, ID 83844 USA
关键词
D O I
10.1006/jmaa.2000.7192
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a necessary and sufficient condition on the complex sequence {a(n)}, Sigma \a(n)\(2) < <infinity>, so that Sigma (infinity)(n=1) +/- a(n)z(n) represents a Bloch function for almost all choices of signs "+/-" answering a question left open by J. M. Anderson et al. (1974, J. Reine Agnew. Math. 270, 12-37). (C) 2000 Academic Press.
引用
收藏
页码:959 / 966
页数:8
相关论文
共 6 条
[1]  
Adler R.J., 1990, An introduction to Continuity, Extrema, and Related Topic for General Gaussian Processes
[2]  
ANDERSON JM, 1974, J REINE ANGEW MATH, V270, P12
[3]  
ANDERSON JM, 1994, LECT NOTES MATH, V1573, P174
[4]  
DUREN P, 1985, MICH MATH J, V32, P81
[5]  
LEDOUX M, 1991, PROBABILITY BANACH S
[6]  
Marcus M. B., 1981, RANDOM FOURIER SERIE