Conic type Caffarelli-Kohn-Nirenberg inequality on manifold with conical singularity

被引:1
作者
Jafari, Ali Asghar [1 ]
Alimohammady, Mohsen [1 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar 474161468, Iran
关键词
Caffarelli-Kohn-Nirenberg-type inequality; Nonlinear elliptic equations; Partial differential equations on manifolds; EXISTENCE; EQUATIONS;
D O I
10.1007/s11868-018-0243-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a manifold with conical singularity and introduce weighted cone Sobolev spaces. We prove a conic type Caffarelli-Kohn-Nirenberg inequality and then apply this inequality to obtain a existence result of a nonlinear elliptic equation on weighted cone Sobolev space.
引用
收藏
页码:915 / 927
页数:13
相关论文
共 16 条
[1]   Existence result for a class of semilinear totally characteristic hypoelliptic equations with conical degeneration [J].
Alimohammady, Mohsen ;
Kalleji, Morteza Koozehgar .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (10) :2331-2356
[2]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[3]   A Caffarelli-Kohn-Nirenberg type inequality on Riemannian manifolds [J].
Bozhkov, Yuri .
APPLIED MATHEMATICS LETTERS, 2010, 23 (10) :1166-1169
[4]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[5]   Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents [J].
Chen, Hua ;
Liu, Xiaochun ;
Wei, Yawei .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 39 (01) :27-43
[6]   Some new and short proofs for a class of Caffarelli-Kohn-Nirenberg type inequalities [J].
Costa, David G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :311-317
[7]   Nonlinear elliptic problems with a singular weight on the boundary [J].
Davila, Juan ;
Peral, Ireneo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 41 (3-4) :567-586
[8]  
Egorov Yu., 1997, PSEUDO DIFFERENTIAL
[9]   Sobolev inequalities for the Hardy-Schrodinger operator: extremals and critical dimensions [J].
Ghoussoub, Nassif ;
Robert, Frederic .
BULLETIN OF MATHEMATICAL SCIENCES, 2016, 6 (01) :89-144
[10]  
Hardy J. Littlewood, 1952, The Mathematical Gazette, DOI DOI 10.1017/S0025557200027455