High-Performance Molecular Imaging with MALDI Trapped Ion-Mobility Time-of-Flight (timsTOF) Mass Spectrometry

被引:162
作者
Spraggins, Jeffrey M. [1 ,2 ,3 ,4 ]
Djambazova, Katerina V. [2 ,3 ]
Rivera, Emilio S. [1 ,3 ]
Migas, Lukasz G. [5 ]
Neumann, Elizabeth K. [1 ,3 ]
Fuetterer, Arne [6 ]
Suetering, Juergen [6 ]
Goedecke, Niels [6 ]
Ly, Alice [6 ]
Van de Plas, Raf [1 ,3 ,5 ]
Caprioli, Richard M. [1 ,2 ,3 ,7 ]
机构
[1] Vanderbilt Univ, Dept Biochem, 607 Light Hall, Nashville, TN 37205 USA
[2] Vanderbilt Univ, Dept Chem, 7330 Stevenson Ctr,Stn B 351822, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Mass Spectrometry Res Ctr, 465 21st Ave S 9160, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Dept Med, 465 21st Ave S 9160, Nashville, TN 37235 USA
[5] Delft Univ Technol, DCSC, NL-2628 CD Delft, Netherlands
[6] Bruker Daltonik GmbH, Fahrenheitstr 4, D-28359 Bremen, Germany
[7] Vanderbilt Univ, Dept Pharmacol, 2220 Pierce Ave, Nashville, TN 37232 USA
基金
美国国家科学基金会;
关键词
HIGH-RESOLUTION; DRIFT-TUBE; TISSUE; SECTIONS; PROTEINS; TOF; ELECTROSPRAY; LOCALIZATION; FUNDAMENTALS; ACQUISITION;
D O I
10.1021/acs.analchem.9b03612
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Imaging mass spectrometry (IMS) enables the spatially targeted molecular assessment of biological tissues at cellular resolutions. New developments and technologies are essential for uncovering the molecular drivers of native physiological function and disease. Instrumentation must maximize spatial resolution, throughput, sensitivity, and specificity, because tissue imaging experiments consist of thousands to millions of pixels. Here, we report the development and application of a matrix-assisted laser desorption/ionization (MALDI) trapped ion-mobility spectrometry (TIMS) imaging platform. This prototype MALDI timsTOF instrument is capable of 10 mu m spatial resolutions and 20 pixels/s throughput molecular imaging. The MALDI source utilizes a Bruker SmartBeam 3-D laser system that can generate a square burn pattern of <10 x 10 mu m at the sample surface. General image performance was assessed using murine kidney and brain tissues and demonstrate that high-spatial-resolution imaging data can be generated rapidly with mass measurement errors <5 ppm and similar to 40 000 resolving power. Initial TIMS-based imaging experiments were performed on whole-body mouse pup tissue demonstrating the separation of closely isobaric [PC(32:0) + Na](+) and [PC(34:3)(+) H](+) (3 mDa mass difference) in the gas phase. We have shown that the MALDI timsTOF platform can maintain reasonable data acquisition rates (>2 pixels/s) while providing the specificity necessary to differentiate components in complex mixtures of lipid adducts. The combination of high-spatial-resolution and throughput imaging capabilities with high-performance TIMS separations provides a uniquely tunable platform to address many challenges associated with advanced molecular imaging applications.
引用
收藏
页码:14552 / 14560
页数:9
相关论文
共 53 条
[21]   Matrix assisted laser desorption ionisation ion mobility separation mass spectrometry imaging of ex-vivo human skin [J].
Hart, Philippa J. ;
Francese, Simona ;
Woodroofe, M. Nicola ;
Clench, Malcolm R. .
INTERNATIONAL JOURNAL FOR ION MOBILITY SPECTROMETRY, 2013, 16 (02) :71-83
[22]   Ion dynamics in a trapped ion mobility spectrometer [J].
Hernandez, Diana Rosa ;
DeBord, John Daniel ;
Ridgeway, Mark E. ;
Kaplan, Desmond A. ;
Park, Melvin A. ;
Fernandez-Lima, Francisco .
ANALYST, 2014, 139 (08) :1913-1921
[23]   Molecular imaging of drug-eluting coronary stents: method development, optimization and selected applications [J].
Huang, Jiun-Tang ;
Hannah-Qiuhua, Li ;
Szyszka, Renata ;
Veselov, Vladimir ;
Reed, Gail ;
Wang, Xiande ;
Price, Sylvester ;
Alquier, Lori ;
Vas, Gyorgy .
JOURNAL OF MASS SPECTROMETRY, 2012, 47 (02) :155-162
[24]   Sample preparation issues for tissue imaging by imaging MS [J].
Kaletas, Basak Kuekrer ;
van der Wiel, Ingrid M. ;
Stauber, Jonathan ;
Dekker, Lennard J. ;
Guzel, Coskun ;
Kros, Johan M. ;
Luider, Theo M. ;
Heeren, Ron M. A. .
PROTEOMICS, 2009, 9 (10) :2622-2633
[25]   Ambient ionisation mass spectrometry for in situ analysis of intact proteins [J].
Kocurek, Klaudia I. ;
Griffiths, Rian L. ;
Cooper, Helen J. .
JOURNAL OF MASS SPECTROMETRY, 2018, 53 (07) :565-578
[26]   Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS) [J].
Kolakowski, Beata M. ;
Mester, Zoltan .
ANALYST, 2007, 132 (09) :842-864
[27]  
Kompauer M, 2017, NAT METHODS, V14, P90, DOI [10.1038/NMETH.4071, 10.1038/nmeth.4071]
[28]   Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer [J].
May, Jody C. ;
Goodwin, Cody R. ;
Lareau, Nichole M. ;
Leaptrot, Katrina L. ;
Morris, Caleb B. ;
Kurulugama, Ruwan T. ;
Mordehai, Alex ;
Klein, Christian ;
Barry, William ;
Darland, Ed ;
Overney, Gregor ;
Imatani, Kenneth ;
Stafford, George C. ;
Fjeldsted, John C. ;
McLean, John A. .
ANALYTICAL CHEMISTRY, 2014, 86 (04) :2107-2116
[29]   Profiling and imaging of tissues by imaging ion mobility-mass spectrometry [J].
McLean, John A. ;
Ridenour, Whitney B. ;
Caprioli, Richard M. .
JOURNAL OF MASS SPECTROMETRY, 2007, 42 (08) :1099-1105
[30]   Fundamentals of Trapped Ion Mobility Spectrometry [J].
Michelmann, Karsten ;
Silveira, Joshua A. ;
Ridgeway, Mark E. ;
Park, Melvin A. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2015, 26 (01) :14-24