Equivalence of ordinary differential equations y"=R(x,y)y′2+2Q(x,y)y′+P(x,y)

被引:8
作者
Bagderina, Yu. Yu. [1 ]
机构
[1] Russian Acad Sci, Ufa Sci Ctr, Inst Math Computing Ctr, Ufa, Russia
基金
俄罗斯基础研究基金会;
关键词
Ordinary Differential Equation; Equivalence Transformation; Point Transformation; Independent Invariant; Inverse Scattering Method;
D O I
10.1134/S0012266107050035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:595 / 604
页数:10
相关论文
共 15 条
[1]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[2]  
[Anonymous], NOTICES AM MATH SOC
[3]  
[Anonymous], USPEKHI MAT NAUK
[4]   Projective differential geometrical structure of the Painleve equations [J].
Babich, MV ;
Bordag, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (02) :452-485
[5]  
BAGDERINA YY, 2005, ZH PRIKL MEKH TEOR F, V46, P26
[6]   THEORY OF WATER WAVES [J].
GREEN, AE ;
LAWS, N ;
NAGHDI, PM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1974, 338 (1612) :43-55
[7]  
GROMAK VI, 1990, ANALITICHESKIE SVOIS
[8]  
IBRAGIMON NK, 2004, ZH PRIKL MEKH TEOR F, V45, P11
[9]  
Ince EL, 1926, ORDINARY DIFFERENTIA
[10]  
Kamke E., 1969, DIFFERENTIALGLEICHUN