EXISTENCE OF THE CONTINUED FRACTIONS OF d AND ITS APPLICATIONS

被引:0
作者
Lee, Jun Ho [1 ]
机构
[1] Mokpo Natl Univ, Dept Math Educ, Muan Gun 58554, South Korea
基金
新加坡国家研究基金会;
关键词
Continued fractions; quadratic fields; fundamental units; ARTIN-CHOWLA CONJECTURE; FUNDAMENTAL UNITS; EXPLICIT REPRESENTATION;
D O I
10.4134/BKMS.b210422
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the continued fraction expansion of root d has the form [a(0), a(1), . . . , a(l-1), 2a(0)] and a(1), . . . , a(l-1) is a palindromic sequence of positive integers. For a given positive integer l and a palindromic sequence of positive integers a(1), . . . , all(-1), we define the set S(l; a(1), ..., a(l-1)) := {d is an element of Z vertical bar d > 0, v root d = [a(0), a(1),..., a(l-1), 2a(0)], where a(0) = [root d]}. In this paper, we completely determine when S(l; a(1), ... , a(l-1)) is not empty in the case that l is 4, 5, 6, or 7. We also give similar results for (1 + d)/2. For the case that l is 4, 5, or 6, we explicitly describe the v/ fundamental units of the real quadratic field Q(root d). Finally, we apply our results to the Mordell conjecture for the fundamental units of Q(root d).
引用
收藏
页码:697 / 707
页数:11
相关论文
共 19 条
[1]   THE CLASS-NUMBER OF REAL QUADRATIC NUMBER FIELDS [J].
ANKENY, NC ;
ARTIN, E ;
CHOWLA, S .
ANNALS OF MATHEMATICS, 1952, 56 (03) :479-493
[2]   ON THE FUNDAMENTAL UNITS AND THE CLASS-NUMBERS OF REAL QUADRATIC FIELDS [J].
AZUHATA, T .
NAGOYA MATHEMATICAL JOURNAL, 1984, 95 (SEP) :125-135
[3]  
Beach B.D., 1971, P 25 SUMM M CAN MATH, P609
[4]  
BERNSTEIN L, 1976, PAC J MATH, V63, P63, DOI 10.2140/pjm.1976.63.63
[5]   A NOTE ON UNITS OF REAL QUADRATIC FIELDS [J].
Byeon, Dongho ;
Lee, Sangyoon .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (04) :767-774
[6]   ON A CONJECTURE OF MORDELL [J].
Chakraborty, Debopam ;
Saikia, Anupam .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (08) :2545-2556
[7]   ON CONTINUED FRACTIONS OF GIVEN PERIOD [J].
FRIESEN, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (01) :9-14
[8]   Ankeny-Artin-Chowla conjecture and continued fraction expansion [J].
Hashimoto, R .
JOURNAL OF NUMBER THEORY, 2001, 90 (01) :143-153
[9]   Multi-variable polynomial solutions to Pell's equation and fundamental units in real quadratic fields [J].
Mc Laughlin, J .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 210 (02) :335-349
[10]  
Mollin R. A., 1996, CRC PRESS SERIES DIS