Kinetic Theory for Distribution Functions of Wave-Particle Interactions in Plasmas

被引:21
作者
Kominis, Y. [1 ]
Ram, A. K. [2 ]
Hizanidis, K. [1 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Assoc EURATOM Hellen Republ, GR-15773 Zografos, Greece
[2] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
关键词
QUASI-LINEAR THEORY; NONQUASILINEAR DIFFUSION; MARKOVIAN APPROXIMATION; TURBULENCE;
D O I
10.1103/PhysRevLett.104.235001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The evolution of a charged particle distribution function under the influence of coherent electromagnetic waves in a plasma is determined from kinetic theory. For coherent waves, the dynamical phase space of particles is an inhomogeneous mix of chaotic and regular orbits. The persistence of long time correlations between the particle motion and the phase of the waves invalidates any simplifying Markovian or statistical assumptions-the basis for usual quasilinear theories. The generalized formalism in this Letter leads to a hierarchy of evolution equations for the reduced distribution function. The evolution operators, in contrast to the quasilinear theories, are time dependent and nonsingular and include the rich phase space dynamics of particles interacting with coherent waves.
引用
收藏
页数:4
相关论文
共 29 条
[1]   The Hamilton-Jacobi method and Hamiltonian maps [J].
Abdullaev, SS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (12) :2811-2832
[2]  
BALESCU R, 2005, SERIES PLASMAS PHYS
[3]   Nonstandard diffusion properties of the standard map [J].
Benisti, D ;
Escande, DF .
PHYSICAL REVIEW LETTERS, 1998, 80 (22) :4871-4874
[4]   NONQUASILINEAR DIFFUSION FAR FROM THE CHAOTIC THRESHOLD [J].
CARY, JR ;
ESCANDE, DF ;
VERGA, AD .
PHYSICAL REVIEW LETTERS, 1990, 65 (25) :3132-3135
[5]   LIE TRANSFORM PERTURBATION-THEORY FOR HAMILTONIAN-SYSTEMS [J].
CARY, JR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 79 (02) :129-159
[6]  
Deprit A., 1969, Celestial Mechanics, V1, P12, DOI 10.1007/BF01230629
[7]  
DRUMMOND WE, 1962, NUCL FUSION, P1049
[8]   When can the fokker-planck equation describe anomalous or chaotic transport? [J].
Escande, D. F. ;
Sattin, F. .
PHYSICAL REVIEW LETTERS, 2007, 99 (18)
[9]   DERIVATION OF QUASILINEAR EQUATIONS [J].
FUKAI, J ;
HARRIS, EG .
JOURNAL OF PLASMA PHYSICS, 1972, 7 (APR) :313-&
[10]   SIMULATION OF NONQUASILINEAR DIFFUSION [J].
HELANDER, P ;
KJELLBERG, L .
PHYSICS OF PLASMAS, 1994, 1 (01) :210-212