On the Kirchhoff Index and the Number of Spanning Trees of Linear Phenylenes Chain

被引:6
作者
Geng, Xianya [1 ]
Lei, Yu [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Peoples R China
基金
美国国家科学基金会;
关键词
Laplacian spectrum; linear Phenylenes chain; Kirchhoff index; spanning tree; ECCENTRIC DISTANCE SUM; WIENER INDEX; EXTREMAL VALUES; GRAPHS; VERTICES;
D O I
10.1080/10406638.2021.1923536
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Let L-n(6,4,4) denote a molecular graph of linear [n] phenylene, containing n hexagons and 2n-1 squares. In this paper, according to the decomposition theorem of Laplacian polynomial, we obtain that the Laplacian spectrum of L-n(6,4,4) consists of the Laplacian spectrum of path P-4n and eigenvalues of a symmentric tridiagonal matrix of order 4n. By applying the relationship between the roots and coefficients of the characteristic polynomial of the above matrix, explicit closed formula of Kirchhoff index and the number of spanning trees of L-n(6,4,4) are derived in terms of the Laplacian spectrum.
引用
收藏
页码:4984 / 4993
页数:10
相关论文
共 37 条
[1]  
Anderson W. N., 1985, LINEAR MULTILINEAR A, V18, P141, DOI DOI 10.1080/03081088508817681
[2]  
Bapat R. B., 2010, Graphs and Matrices, V27, DOI [DOI 10.1007/978-1-84882-981-7, 10.1007/978-1-84882-981-7]
[3]  
Bondy J.A., 2008, Graduate Texts in Math., V244, DOI DOI 10.1007/978-1-84628-970-5
[4]  
Bu, J ALGEBR COMB
[5]  
Buckley F., 1989, DISTANCE GRAPHS
[6]  
Chen AL, 2009, MATCH-COMMUN MATH CO, V61, P623
[7]   Deletion and Contraction Identities for the Resistance Values and the Kirchhoff Index [J].
Cinkir, Zubeyir .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2011, 111 (15) :4030-4041
[8]   Wiener index of hexagonal systems [J].
Dobrynin, AA ;
Gutman, I ;
Klavzar, S ;
Zigert, P .
ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (03) :247-294
[9]   Wiener index of trees: Theory and applications [J].
Dobrynin, AA ;
Entringer, R ;
Gutman, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) :211-249
[10]  
ENTRINGER RC, 1976, CZECH MATH J, V26, P283