Some results on ideals of semiprime rings with multiplicative generalized derivations

被引:12
作者
Koc, Emine [1 ]
Golbasi, Oznur [1 ]
机构
[1] Cumhuriyet Univ, Dept Math, Fac Sci, Sivas, Turkey
关键词
Centralizing mapping; commuting mapping; ideal; multiplicative generalized derivation; SCP map; semiprime ring; COMMUTATIVITY; MAPPINGS; PRIME;
D O I
10.1080/00927872.2018.1459644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a semiprime ring and I a nonzero ideal of R. A map F:RR is called a multiplicative generalized derivation if there exists a map d:RR such that F(xy)=F(x)y+xd(y), for all x,yR. In the present paper, we shall prove that R contains a nonzero central ideal if any one of the following holds: i) iii) F is SCP on I, iv) F(u)degrees F(v)=u degrees v, for all u,v is an element of I.
引用
收藏
页码:4905 / 4913
页数:9
相关论文
共 50 条
  • [41] IDENTITIES WITH GENERALIZED DERIVATIONS IN SEMIPRIME RINGS
    Dhara, Basudeb
    Ali, Shakir
    Pattanayak, Atanu
    DEMONSTRATIO MATHEMATICA, 2013, 46 (03) : 453 - 460
  • [42] Generalized skew derivations on semiprime rings
    De Filippis, Vincenzo
    Di Vincenzo, Onofrio Mario
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (05) : 927 - 939
  • [43] On centralizers and multiplicative generalized derivations of semiprime ring
    Shujat, Faiza
    Khan, Shahoor
    Ansari, Abu Zaid
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 229 - 237
  • [44] Orthogonal generalized (σ, τ)-derivations of semiprime rings
    Oznur Gölbaşi
    Neşet Aydin
    Siberian Mathematical Journal, 2007, 48 : 979 - 983
  • [45] On generalized ()-derivations in semiprime rings with involution
    Ashraf, Mohammad
    Nadeem-ur-Rehman
    Ali, Shakir
    Mozumder, Muzibur Rahman
    MATHEMATICA SLOVACA, 2012, 62 (03) : 451 - 460
  • [46] ON COMMUTATIVITY OF SEMIPRIME RINGS WITH GENERALIZED DERIVATIONS
    Golbasi, Oznur
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2009, 40 (03) : 191 - 199
  • [47] LIE IDEALS AND ACTION OF GENERALIZED DERIVATIONS IN RINGS
    Dhara, Basudeb
    Rehman, Nadeem Ur
    Raza, Mohd Arif
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (02) : 769 - 779
  • [48] On prime and semiprime rings with derivations
    Argaç, N
    ALGEBRA COLLOQUIUM, 2006, 13 (03) : 371 - 380
  • [49] Symmetric Reverse n-Derivations on Ideals of Semiprime Rings
    Ali, Shakir
    Hummdi, Ali Yahya
    Rafiquee, Naira N.
    Varshney, Vaishali
    Wong, Kok Bin
    AXIOMS, 2024, 13 (10)
  • [50] Semiprime rings with prime ideals invariant under derivations
    Chuang, CL
    Lee, TK
    JOURNAL OF ALGEBRA, 2006, 302 (01) : 305 - 312