Some results on ideals of semiprime rings with multiplicative generalized derivations

被引:12
|
作者
Koc, Emine [1 ]
Golbasi, Oznur [1 ]
机构
[1] Cumhuriyet Univ, Dept Math, Fac Sci, Sivas, Turkey
关键词
Centralizing mapping; commuting mapping; ideal; multiplicative generalized derivation; SCP map; semiprime ring; COMMUTATIVITY; MAPPINGS; PRIME;
D O I
10.1080/00927872.2018.1459644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a semiprime ring and I a nonzero ideal of R. A map F:RR is called a multiplicative generalized derivation if there exists a map d:RR such that F(xy)=F(x)y+xd(y), for all x,yR. In the present paper, we shall prove that R contains a nonzero central ideal if any one of the following holds: i) iii) F is SCP on I, iv) F(u)degrees F(v)=u degrees v, for all u,v is an element of I.
引用
收藏
页码:4905 / 4913
页数:9
相关论文
共 50 条
  • [31] Some results on prime rings with multiplicative derivations
    Sandhu, Gurninder Singh
    Camci, Didem Karalarlioglu
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (04) : 1401 - 1411
  • [32] GENERALIZED DERIVATIONS ON SEMIPRIME RINGS
    De Filippis, Vincenzo
    Huang, Shuliang
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1253 - 1259
  • [33] Generalized Multiplicative α-skew Derivations on Rings
    Boua, A.
    Ashraf, M.
    Abdelwanis, A. Y.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [34] On generalized (α, β)-derivations of semiprime rings
    Ali, Faisal
    Chaudhry, Muhammad Anwar
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (03) : 383 - 393
  • [35] Multiplicative (generalized)-derivation in semiprime rings
    Tiwari S.K.
    Sharma R.K.
    Dhara B.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (1): : 211 - 225
  • [36] Some Results Concerning Multiplicative (Generalized)-Derivations and Multiplicative Left Centralizers
    Faraj, Anwar Khaleel
    Abduldaim, Areej M.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (04) : 1073 - 1090
  • [37] Generalized derivations with nilpotent values in semiprime rings
    Liu, Cheng-Kai
    QUAESTIONES MATHEMATICAE, 2024, 47 (06) : 1195 - 1212
  • [38] STUDY OF (σ, τ)-GENERALIZED DERIVATIONS WITH THEIR COMPOSITION OF SEMIPRIME RINGS
    Fosner, Ajda
    Atteya, Mehsin Jabel
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (04): : 535 - 558
  • [39] Orthogonal generalized (σ, τ)-derivations of semiprime rings
    Golbasi, O.
    Aydin, N.
    SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (06) : 979 - 983
  • [40] A note on generalized derivations of semiprime rings
    Vukman, Joso
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (02): : 367 - 370