A mass budget for mercury and methylmercury in the Arctic Ocean

被引:118
作者
Soerensen, Anne L. [1 ,2 ,3 ]
Jacob, Daniel J. [2 ]
Schartup, Amina T. [1 ,2 ]
Fisher, Jenny A. [4 ]
Lehnherr, Igor [5 ,6 ]
St Louis, Vincent L. [5 ]
Heimbuerger, Lars-Eric [7 ,8 ,9 ]
Sonke, Jeroen E. [7 ]
Krabbenhoft, David P. [10 ]
Sunderland, Elsie M. [1 ,2 ]
机构
[1] Harvard Univ, TH Chan Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Stockholm Univ, Dept Environm Sci & Analyt Chem, S-10691 Stockholm, Sweden
[4] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW, Australia
[5] Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada
[6] Univ Toronto, Dept Geog, Mississauga, ON L5L 1C6, Canada
[7] CNRS, Geosci Environm Toulouse, Observ Midi Pyrenees, Toulouse, France
[8] Univ Bremen, Dept Geosci, D-28359 Bremen, Germany
[9] Univ Toulon & Var, Aix Marseille Univ, CNRS, INSU,IRD,Mediterranean Inst Oceanog UM 110, Marseille, France
[10] US Geol Survey, Middleton, WI USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Arctic; ocean; budget; methylmercury; model; MARINE SURFACE WATERS; ATMOSPHERIC MERCURY; METHYLATED MERCURY; INORGANIC MERCURY; MACKENZIE RIVER; ORGANIC-CARBON; CLIMATE-CHANGE; TRACE-METALS; BEAUFORT SEA; SPECIATION;
D O I
10.1002/2015GB005280
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Elevated biological concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, are observed throughout the Arctic Ocean, but major sources and degradation pathways in seawater are not well understood. We develop a mass budget for mercury species in the Arctic Ocean based on available data since 2004 and discuss implications and uncertainties. Our calculations show that high total mercury (Hg) in Arctic seawater relative to other basins reflect large freshwater inputs and sea ice cover that inhibits losses through evasion. We find that most net MeHg production (20Mga(-1)) occurs in the subsurface ocean (20-200m). There it is converted to dimethylmercury (Me2Hg: 17Mga(-1)), which diffuses to the polar mixed layer and evades to the atmosphere (14Mga(-1)). Me2Hg has a short atmospheric lifetime and rapidly degrades back to MeHg. We postulate that most evaded Me2Hg is redeposited as MeHg and that atmospheric deposition is the largest net MeHg source (8Mga(-1)) to the biologically productive surface ocean. MeHg concentrations in Arctic Ocean seawater are elevated compared to lower latitudes. Riverine MeHg inputs account for approximately 15% of inputs to the surface ocean (2.5Mga(-1)) but greater importance in the future is likely given increasing freshwater discharges and permafrost melt. This may offset potential declines driven by increasing evasion from ice-free surface waters. Geochemical model simulations illustrate that for the most biologically relevant regions of the ocean, regulatory actions that decrease Hg inputs have the capacity to rapidly affect aquatic Hg concentrations.
引用
收藏
页码:560 / 575
页数:16
相关论文
共 117 条
[61]   Importance of Ultraviolet Radiation in the Photodemethylation of Methylmercury in Freshwater Ecosystems [J].
Lehnherr, Igor ;
Louis, Vincent L. St. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (15) :5692-5698
[62]  
Leitch D. R., 2006, MERCURY DISTRIBUTION, P130
[63]   The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River [J].
Leitch, Daniel R. ;
Carrie, Jesse ;
Lean, David ;
Macdonald, Robie W. ;
Stern, Gary A. ;
Wang, Feiyue .
SCIENCE OF THE TOTAL ENVIRONMENT, 2007, 373 (01) :178-195
[64]   The chemistry of atmospheric mercury: a review [J].
Lin, CJ ;
Pehkonen, SO .
ATMOSPHERIC ENVIRONMENT, 1999, 33 (13) :2067-2079
[65]   Magnification of atmospheric mercury deposition to polar regions in springtime: the link to tropospheric ozone depletion chemistry [J].
Lu, JY ;
Schroeder, WH ;
Barrie, LA ;
Steffen, A ;
Welch, HE ;
Martin, K ;
Lockhart, L ;
Hunt, RV ;
Boila, G ;
Richter, A .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (17) :3219-3222
[66]   Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data [J].
Macdonald, RW ;
Harner, T ;
Fyfe, J .
SCIENCE OF THE TOTAL ENVIRONMENT, 2005, 342 (1-3) :5-86
[67]   Mercury biogeochemical cycling in the ocean and policy implications [J].
Mason, Robert P. ;
Choi, Anna L. ;
Fitzgerald, William F. ;
Hammerschmidt, Chad R. ;
Lamborg, Carl H. ;
Soerensen, Anne L. ;
Sunderland, Elsie M. .
ENVIRONMENTAL RESEARCH, 2012, 119 :101-117
[68]   METHYLATED AND ELEMENTAL MERCURY CYCLING IN SURFACE AND DEEP-OCEAN WATERS OF THE NORTH-ATLANTIC [J].
MASON, RP ;
ROLFHUS, KR ;
FITZGERALD, WF .
WATER AIR AND SOIL POLLUTION, 1995, 80 (1-4) :665-677
[69]   The distribution and speciation of mercury in the South and equatorial Atlantic [J].
Mason, RP ;
Sullivan, KA .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 1999, 46 (05) :937-956
[70]   Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea [J].
Monperrus, M. ;
Tessier, E. ;
Amouroux, D. ;
Leynaert, A. ;
Huonnic, P. ;
Donard, O. F. X. .
MARINE CHEMISTRY, 2007, 107 (01) :49-63