Synergistic ligand exchange and UV curing of PbS quantum dots for effective surface passivation

被引:10
作者
Dastjerdi, Hadi Tavakoli [1 ]
Prochowicz, Daniel [2 ]
Yadav, Pankaj [3 ]
Tavakoli, Mohammad Mandi [4 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] Polish Acad Sci, Inst Phys Chem, Kasprzaka 44-52, PL-01224 Warsaw, Poland
[3] Pandit Deendayal Petr Univ, Sch Technol, Dept Solar Energy, Gandhinagar 382007, Gujarat, India
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会;
关键词
CHARGE-CARRIER DIFFUSION; SOLAR-CELLS; SUPERCRITICAL SYNTHESIS; NANOCRYSTALS;
D O I
10.1039/c9nr07854a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lead sulfide (PbS) quantum dots (QDs) are promising materials in solution-processed photovoltaic (PV) devices due to their tunable bandgap and low-cost processing. Replacing the long oleic acid ligands of the as-synthesized QDs with shorter ligands is a key step for making functional QD PVs with correctly tuned band energies and reduced non-radiative recombination centers. In this work, we study the effect of ultraviolet (UV) treatment of PbS QD layers on the QD surface states during ligand exchange. We demonstrate that this straightforward approach effectively reduces the surface trap states and passivates the surface of QDs. We find that UV treatment reduces the density of hydroxyl groups attached to the QD surface and improves the bonding of short ligands to the QD surface. Multiple analyses show the reduction of nonradiative recombination centers for the UV-treated sample. The power conversion efficiency (PCE) of our optimized PbS QD device reached 10.7% (vs. 9% for the control device) and was maintained above 10% after 230 h of constant illumination.
引用
收藏
页码:22832 / 22840
页数:9
相关论文
共 50 条
[21]   The influence of exposed surface on trap state of PbS quantum dots [J].
Hu, Jichao ;
He, Xiaomin ;
Pu, Hongbin ;
Yang, Yingxiang ;
Chen, Chunlan .
SUPERLATTICES AND MICROSTRUCTURES, 2020, 145
[22]   Stronger Coupling of Quantum Dots in Hole Transport Layer Through Intermediate Ligand Exchange to Enhance the Efficiency of PbS Quantum Dot Solar Cells [J].
Wei, Yuyao ;
Ding, Chao ;
Shi, Guozheng ;
Bi, Huan ;
Li, Yusheng ;
Li, Hua ;
Liu, Dong ;
Yang, Yongge ;
Wang, Dandan ;
Chen, Shikai ;
Wang, Ruixiang ;
Hayase, Shuzi ;
Masuda, Taizo ;
Shen, Qing .
SMALL METHODS, 2024, 8 (12)
[23]   Chlorine passivation of PbS quantum dots in all solid glass matrix for high efficiency luminescence [J].
Zhao, Zhiyong ;
Peng, Cairu ;
Yin, Qiaoyun ;
Yang, Dayi ;
Tian, Yingliang ;
Wang, Ruzhi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
[24]   Sensitive Surface States and their Passivation Mechanism in CdS Quantum Dots [J].
Vempati, Sesha ;
Ertas, Yelda ;
Uyar, Tamer .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (41) :21609-21618
[25]   In situ passivation for high-quality PbS colloidal quantum dots synthesized using a PbBr2 precursor [J].
Li, Jun ;
Ni, Jian ;
Guan, Jiayi ;
Wang, Rufeng ;
Wang, Jinlin ;
Yang, Zhiwei ;
Zhang, Shuai ;
Li, Sen ;
Zhang, Yaofang ;
Li, Juan ;
Cai, Hongkun ;
Zhang, Jianjun .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (12)
[26]   Ligand Effect in 1-Octanethiol Passivation of InP/ZnSe/ZnS Quantum Dots-Evidence of Incomplete Surface Passivation during Synthesis [J].
Kim, Jiyong ;
Kim, Yohan ;
Park, Kyoungwon ;
Boeffel, Christine ;
Choi, Hyung-Seok ;
Taubert, Andreas ;
Wedel, Armin .
SMALL, 2022, 18 (40)
[27]   Electrochemical surface-enhanced Raman scattering measurement on ligand capped PbS quantum dots at gap of Au nanodimer [J].
Li, Xiaowei ;
Minamimoto, Hiro ;
Murakoshi, Kei .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2018, 197 :244-250
[28]   Ambient Stable and Efficient Monolithic Tandem Perovskite/PbS Quantum Dots Solar Cells via Surface Passivation and Light Management Strategies [J].
Tavakoli, Mohammad Mahdi ;
Dastjerdi, Hadi Tavakoli ;
Yadav, Pankaj ;
Prochowicz, Daniel ;
Si, Huayan ;
Tavakoli, Rouhollah .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (21)
[29]   A Modular Phase Transfer and Ligand Exchange Protocol for Quantum Dots [J].
Zylstra, Joshua ;
Amey, Jennifer ;
Miska, Nathaniel J. ;
Pang, Lisa ;
Hine, Corey R. ;
Langer, Julia ;
Doyle, Robert P. ;
Maye, Mathew M. .
LANGMUIR, 2011, 27 (08) :4371-4379
[30]   Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots with in Situ Halide Passivation for Quantum Dot Solar Cells [J].
Zhang, Jianbing ;
Gao, Jianbo ;
Miller, Elisa M. ;
Luther, Joseph M. ;
Beard, Matthew C. .
ACS NANO, 2014, 8 (01) :614-622