A support theorem for quasianalytic functionals

被引:23
作者
Heinrich, Tobias [1 ]
Meise, Reinhold [1 ]
机构
[1] Univ Dusseldorf, Math Inst, D-40225 Dusseldorf, Germany
关键词
ultradifferentiable functions; quasianalytic functionals; support;
D O I
10.1002/mana.200410488
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a weight function omega and an open set G in R-N denote by E-(omega) (G) (resp. epsilon({omega})(G)) the omega-ultradifferentiable functions of Beurling (resp. Roumieu) type on G. Using ideas of Hormander it is shown that the functionals u in epsilon((omega))' (G) and epsilon({omega})' (G) can be embedded into the realanalytic functionals on R-N and that there is a smallest supporting set for u in the corresponding class which coincides with the realanalytic (hyperfunction) support of u. Moreover, if omega is quasianalytic and if a compact subset K of G is the union of the compact sets K-1 and K-2 then each u is an element of epsilon({omega})' (G) which is supported by K can be decomposed as u = u(1) + u(2), where u(j) is supported by K-j for j = 1, 2. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:364 / 387
页数:24
相关论文
共 15 条
[1]  
[Anonymous], RESULT MATH
[2]  
Beurling A., 1961, QUASIANALYTICITY GEN
[3]   Projective representations of spaces of quasianalytic functionals [J].
Bonet, J ;
Meise, R ;
Melikhov, SN .
STUDIA MATHEMATICA, 2004, 164 (01) :91-102
[4]   WHITNEY EXTENSION THEOREM FOR NONQUASIANALYTIC CLASSES OF ULTRADIFFERENTIABLE FUNCTIONS [J].
BONET, J ;
BRAUN, RW ;
MEISE, R ;
TAYLOR, BA .
STUDIA MATHEMATICA, 1991, 99 (02) :155-184
[5]   Quasianalytic functionals and projective descriptions [J].
Bonet, J ;
Meise, R .
MATHEMATICA SCANDINAVICA, 2004, 94 (02) :249-266
[6]   CONTINUOUS LINEAR EXTENSION OF ULTRADIFFERENTIABLE FUNCTIONS OF BEURLING TYPE [J].
FRANKEN, U .
MATHEMATISCHE NACHRICHTEN, 1993, 164 :119-139
[7]  
HORMANDER L, 1985, ASTERISQUE, P89
[8]  
Hormander L., 1983, The Analysis of Linear Partial Differential Operators I
[9]  
KOMATSU H, 1973, J FAC SCI U TOKYO 1, V20, P25
[10]   WHITNEY EXTENSION THEOREM FOR ULTRADIFFERENTIABLE FUNCTIONS OF BEURLING TYPE [J].
MEISE, R ;
TAYLOR, BA .
ARKIV FOR MATEMATIK, 1988, 26 (02) :265-287