Superfluidity of disordered Bose systems: numerical analysis of the Gross-Pitaevskii equation with random potential

被引:1
|
作者
Kobayashi, M [1 ]
Tsubota, M [1 ]
Iida, T [1 ]
机构
[1] Osaka City Univ, Fac Sci, Sumiyoshi Ku, Osaka 5588585, Japan
关键词
superfluidity; disorder; Gross-Pitaevskii equation; He-4;
D O I
10.1016/S0921-4526(02)01961-0
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the two-dimensional superfluidity of disordered Bose systems by analyzing the Gross-Pitaevskii equation with random potential. First, we obtain the ground state and calculate its superfluid density by the linear response theory. The superfluid density shows their remarkable dependence on the potential amplitude, the healing length and the density. Secondly, we apply the velocity field to the ground state to observe the breaking of superfluidity due to the excitation of vortex pairs above a critical velocity. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:210 / 211
页数:2
相关论文
共 50 条
  • [31] Application of the homotopy analysis method for the Gross-Pitaevskii equation with a harmonic trap
    石玉仁
    刘丛波
    王光辉
    周志刚
    Chinese Physics B, 2012, 21 (12) : 88 - 93
  • [32] Exact Solutions and Symmetry Operators for the Nonlocal Gross-Pitaevskii Equation with Quadratic Potential
    Shapovalov, Alexander
    Trifonov, Andrey
    Lisok, Alexander
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2005, 1
  • [33] Stability of coherent-solitonic states for Gross-Pitaevskii equation with parabolic potential
    Korneev, N.
    Francisco, E.
    Vysloukh, V. A.
    PHYSICS LETTERS A, 2023, 490
  • [34] Fundamental gaps of the Gross-Pitaevskii equation with repulsive interaction
    Bao, Weizhu
    Ruan, Xinran
    ASYMPTOTIC ANALYSIS, 2018, 110 (1-2) : 53 - 82
  • [35] Solutions of the Gross-Pitaevskii Equation in Prolate Spheroidal Coordinates
    Borisov, A. V.
    Shapovalov, A. V.
    RUSSIAN PHYSICS JOURNAL, 2015, 57 (09) : 1201 - 1209
  • [36] On a solution of the Gross-Pitaevskii equation for a condensate wave function
    Maslov, VP
    Churkin, AV
    MATHEMATICAL NOTES, 2005, 78 (3-4) : 559 - 562
  • [37] Existence and properties of travelling waves for the Gross-Pitaevskii equation
    Bethuel, Fabrice
    Gravejat, Philippe
    Saut, Jean-Claude
    STATIONARY AND TIME DEPENDENT GROSS-PITAEVSKII EQUATIONS, 2008, 473 : 55 - +
  • [38] Integrability of the Gross-Pitaevskii equation with Feshbach resonance management
    Zhao, Dun
    Luo, Hong-Gang
    Chai, Hua-Yue
    PHYSICS LETTERS A, 2008, 372 (35) : 5644 - 5650
  • [39] Global Behavior of Solutions to Generalized Gross-Pitaevskii Equation
    Masaki, Satoshi
    Miyazaki, Hayato
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (03) : 743 - 761
  • [40] The Gross-Pitaevskii equation: Backlund transformations and admitted solutions
    Carillo, Sandra
    Zullo, Federico
    RICERCHE DI MATEMATICA, 2019, 68 (02) : 503 - 512