Superfluidity of disordered Bose systems: numerical analysis of the Gross-Pitaevskii equation with random potential

被引:1
|
作者
Kobayashi, M [1 ]
Tsubota, M [1 ]
Iida, T [1 ]
机构
[1] Osaka City Univ, Fac Sci, Sumiyoshi Ku, Osaka 5588585, Japan
关键词
superfluidity; disorder; Gross-Pitaevskii equation; He-4;
D O I
10.1016/S0921-4526(02)01961-0
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the two-dimensional superfluidity of disordered Bose systems by analyzing the Gross-Pitaevskii equation with random potential. First, we obtain the ground state and calculate its superfluid density by the linear response theory. The superfluid density shows their remarkable dependence on the potential amplitude, the healing length and the density. Secondly, we apply the velocity field to the ground state to observe the breaking of superfluidity due to the excitation of vortex pairs above a critical velocity. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:210 / 211
页数:2
相关论文
共 50 条
  • [1] Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation
    Bao, WZ
    Jaksch, D
    Markowich, PA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 318 - 342
  • [2] Numerical solution for the Gross-Pitaevskii equation
    Hua, Wei
    Liu, Xueshen
    Ding, Peizhu
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2006, 40 (03) : 243 - 255
  • [3] Gravity, Bose-Einstein condensates and Gross-Pitaevskii equation
    Das Gupta, Patrick
    CURRENT SCIENCE, 2015, 109 (11): : 1946 - 1950
  • [4] q-deformed Bose statistics and the Gross-Pitaevskii equation
    Maleki, Mahnaz
    Ebadi, Zahra
    Mohammadzadeh, Hosein
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (06)
  • [5] Vortex helices for the Gross-Pitaevskii equation
    Chiron, D
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (11): : 1555 - 1647
  • [6] Accuracy of the Gross-Pitaevskii Equation in a Double-Well Potential
    Sakhel, Asaad R.
    Ragan, Robert J.
    Mullin, William J.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2024, 216 (5-6) : 683 - 697
  • [7] LOD-MS for Gross-Pitaevskii Equation in Bose-Einstein Condensates
    Kong, Linghua
    Hong, Jialin
    Zhang, Jingjing
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (01) : 219 - 241
  • [8] The Gross-Pitaevskii equation in the energy space
    Gerard, Patrick
    STATIONARY AND TIME DEPENDENT GROSS-PITAEVSKII EQUATIONS, 2008, 473 : 129 - 148
  • [9] Coding of nonlinear states for the Gross-Pitaevskii equation with periodic potential
    Alfimov, G. L.
    Avramenko, A. I.
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 254 : 29 - 45
  • [10] GROSS-PITAEVSKII DYNAMICS FOR BOSE-EINSTEIN CONDENSATES
    Brennecke, Christian
    Schlein, Benjamin
    ANALYSIS & PDE, 2019, 12 (06): : 1513 - 1596