Correlated starting points for the functional renormalization group

被引:34
|
作者
Wentzell, N. [1 ,2 ,3 ,4 ]
Taranto, C. [4 ]
Katanin, A. [5 ,6 ]
Toschi, A. [4 ]
Andergassen, S. [1 ,2 ,3 ]
机构
[1] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
[2] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany
[3] Univ Tubingen, CQ Ctr Collect Quantum Phenomena, D-72076 Tubingen, Germany
[4] Vienna Univ Technol, Inst Solid State Phys, A-1040 Vienna, Austria
[5] Inst Met Phys, Ekaterinburg 620990, Russia
[6] Ural Fed Univ, Ekaterinburg 620002, Russia
关键词
INFINITE DIMENSIONS; FERMION SYSTEMS; HUBBARD-MODEL; FIELD THEORY; APPROXIMATION;
D O I
10.1103/PhysRevB.91.045120
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a general frame to extend functional renormalization group (fRG) based computational schemes by using an exactly solvable interacting reference problem as starting point for the RG flow. The systematic expansion around this solution accounts for a nonperturbative inclusion of correlations. Introducing auxiliary fermionic fields by means of a Hubbard-Stratonovich transformation, we derive the flow equations for the auxiliary fields and determine the relation to the conventional weak-coupling truncation of the hierarchy of flow equations. As a specific example we consider the dynamical mean field theory (DMFT) solution as reference system, and discuss the relation to the recently introduced DMF(2)RG and the dual-fermion formalism.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Nonthermal fixed points and the functional renormalization group
    Berges, Juergen
    Hoffmeister, Gabriele
    NUCLEAR PHYSICS B, 2009, 813 (03) : 383 - 407
  • [2] Functional renormalization group approach to correlated fermion systems
    Metzner, Walter
    Salmhofer, Manfred
    Honerkamp, Carsten
    Meden, Volker
    Schoenhammer, Kurt
    REVIEWS OF MODERN PHYSICS, 2012, 84 (01) : 299 - 352
  • [3] Functional renormalization group approach to correlated electron systems
    Metzner, Walter
    LECTURES ON THE PHYSICS OF HIGHLY CORRELATED ELECTRON SYSTEMS X, 2006, 846 : 130 - 161
  • [4] The correlated block renormalization group
    MartinDelgado, MA
    RodriguezLaguna, J
    Sierra, G
    NUCLEAR PHYSICS B, 1996, 473 (03) : 685 - 706
  • [5] Transport through correlated quantum dots using the functional renormalization group
    Weyrauch, Michael
    Sibold, Dieter
    PHYSICAL REVIEW B, 2008, 77 (12):
  • [6] Recent developments in the functional renormalization group approach to correlated electron systems
    Carsten Honerkamp
    Dante M. Kennes
    Volker Meden
    Michael M. Scherer
    Ronny Thomale
    The European Physical Journal B, 2022, 95
  • [7] Functional renormalization group approach to transport through correlated quantum dots
    Karrasch, C.
    Enss, T.
    Meden, V.
    PHYSICAL REVIEW B, 2006, 73 (23)
  • [8] Recent developments in the functional renormalization group approach to correlated electron systems
    Honerkamp, Carsten
    Kennes, Dante M. M.
    Meden, Volker
    Scherer, Michael M. M.
    Thomale, Ronny
    EUROPEAN PHYSICAL JOURNAL B, 2022, 95 (12):
  • [9] Fixed points and their stability in the functional renormalization group of random field models
    Baczyk, Maxime
    Tarjus, Gilles
    Tissier, Matthieu
    Balog, Ivan
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [10] FIXED-POINTS OF A FUNCTIONAL RENORMALIZATION-GROUP FOR CRITICAL WETTING
    SPOHN, H
    EUROPHYSICS LETTERS, 1991, 14 (07): : 689 - 692