Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations

被引:195
作者
Brody, CD
Romo, R
Kepecs, A
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[2] Univ Nacl Autonoma Mexico, Inst Fisiol Celular, Mexico City 04510, DF, Mexico
关键词
D O I
10.1016/S0959-4388(03)00050-3
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Persistent neural activity is observed in many systems, and is thought to be a neural substrate for holding memories over time delays of a few seconds. Recent work has addressed two issues. First, how can networks of neurons robustly hold such an active memory? Computer systems obtain significant robustness to noise by approximating analogue quantities with discrete digital representations. In a similar manner, theoretical models of persistent activity in spiking neurons have shown that the most robust and stable way to store the short-term memory of a continuous parameter is to approximate it with a discrete representation. This general idea applies very broadly to mechanisms that range from biochemical networks to single cells and to large circuits of neurons. Second, why is it commonly observed that persistent activity in the cortex can be strongly time-varying? This observation is almost ubiquitous, and therefore must be taken into account in our models and our understanding of how short-term memories are held in the cortex.
引用
收藏
页码:204 / 211
页数:8
相关论文
共 51 条
[1]   Anatomy and discharge properties of pre-motor neurons in the goldfish medulla that have eye-position signals during fixations [J].
Aksay, E ;
Baker, R ;
Seung, HS ;
Tank, DW .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 84 (02) :1035-1049
[2]   A SPATIAL-TEMPORAL MODEL OF CELL ACTIVATION [J].
ALKON, DL ;
RASMUSSEN, H .
SCIENCE, 1988, 239 (4843) :998-1005
[3]   Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex [J].
Amit, DJ ;
Brunel, N .
CEREBRAL CORTEX, 1997, 7 (03) :237-252
[4]   THEORY OF ORIENTATION TUNING IN VISUAL-CORTEX [J].
BENYISHAI, R ;
BAROR, RL ;
SOMPOLINSKY, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (09) :3844-3848
[5]  
BRODY CD, IN PRESS CEREBRAL CO
[6]   A model of visuospatial working memory in prefrontal cortex: Recurrent network and cellular bistability [J].
Camperi, M ;
Wang, XJ .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 1998, 5 (04) :383-405
[7]   Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task [J].
Chafee, MV ;
Goldman-Rakic, PS .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (06) :2919-2940
[8]   Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model [J].
Compte, A ;
Brunel, N ;
Goldman-Rakic, PS ;
Wang, XJ .
CEREBRAL CORTEX, 2000, 10 (09) :910-923
[9]   Graded persistent activity in entorhinal cortex neurons [J].
Egorov, AV ;
Hamam, BN ;
Fransén, E ;
Hasselmo, ME ;
Alonso, AA .
NATURE, 2002, 420 (6912) :173-178
[10]   VISUOSPATIAL CODING IN PRIMATE PREFRONTAL NEURONS REVEALED BY OCULOMOTOR PARADIGMS [J].
FUNAHASHI, S ;
BRUCE, CJ ;
GOLDMANRAKIC, PS .
JOURNAL OF NEUROPHYSIOLOGY, 1990, 63 (04) :814-831