Rapid Voltage Sensing with Single Nanorods via the Quantum Confined Stark Effect

被引:22
|
作者
Bar-Elli, Omri [1 ]
Steinitz, Dan [1 ]
Yang, Gaoling [1 ]
Tenne, Ron [1 ]
Ludwig, Anastasia [2 ]
Kuo, Yung [3 ,4 ]
Triller, Antoine [2 ]
Weiss, Shimon [3 ,4 ,5 ]
Oron, Dan [1 ]
机构
[1] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[2] Ecole Normale Super, Inst Biol IBENS, CNRS UMR 8197, Inserm 1024,PSL, 46 Rue Ulm, F-75005 Paris, France
[3] Univ Calif Los Angeles, Dept Physiol, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[5] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, Dept Phys, IL-52900 Ramat Gan, Israel
来源
ACS PHOTONICS | 2018年 / 5卷 / 07期
基金
欧洲研究理事会;
关键词
quantum dots; quantum confined Stark effect; membrane potential sensing; PHOTOINDUCED ELECTRON-TRANSFER; GENETICALLY SPECIFIED NEURONS; FLUORESCENCE INTERMITTENCY; ROOM-TEMPERATURE; DOTS; MOLECULES; PROTEINS; NANOPARTICLES; NANOCRYSTALS; INDICATORS;
D O I
10.1021/acsphotonics.8b00206
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Properly designed colloidal semiconductor quantum dots (QDs) have already been shown to exhibit high sensitivity to external electric fields via the quantum confined Stark effect (QCSE). Yet, detection of the characteristic spectral shifts associated with the effect of the QCSE has traditionally been painstakingly slow, dramatically limiting the sensitivity of these QD sensors to fast transients. We experimentally demonstrate a new detection scheme designed to achieve shot-noise-limited sensitivity to emission wavelength shifts in QDs, showing feasibility for their use as local electric field sensors on the millisecond time scale. This regime of operation is already potentially suitable for detection of single action potentials in neurons at a high spatial resolution.
引用
收藏
页码:2860 / 2867
页数:15
相关论文
共 50 条
  • [1] Characterizing the Quantum-Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology
    Kuo, Yung
    Li, Jack
    Michalet, Xavier
    Chizhik, Alexey
    Meir, Noga
    Bar-Elli, Omri
    Chan, Emory
    Oron, Dan
    Enderlein, Joerg
    Weiss, Shimon
    ACS PHOTONICS, 2018, 5 (12): : 4788 - 4800
  • [2] Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature
    Park, KyoungWon
    Deutsch, Zvicka
    Li, J. Jack
    Oron, Dan
    Weiss, Shimon
    ACS NANO, 2012, 6 (11) : 10013 - 10023
  • [3] Quantum confined Stark effect in single self-assembled GaN/AlN quantum dots
    Nakaoka, T
    Kako, S
    Arakawa, Y
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 32 (1-2) : 148 - 151
  • [4] THz quantum-confined Stark effect in semiconductor quantum dots
    Turchinovich, Dmitry
    Monozon, Boris S.
    Livshits, Daniil A.
    Rafailov, Edik U.
    Hoffmann, Matthias C.
    ULTRAFAST PHENOMENA AND NANOPHOTONICS XVI, 2012, 8260
  • [5] The role of surface charges in the blinking mechanisms and quantum-confined Stark effect of single colloidal quantum dots
    Li, Jialu
    Wang, Dengfeng
    Zhang, Guofeng
    Yang, Changgang
    Guo, Wenli
    Han, Xue
    Bai, Xiuqing
    Chen, Ruiyun
    Qin, Chengbing
    Hu, Jianyong
    Xiao, Liantuan
    Jia, Suotang
    NANO RESEARCH, 2022, 15 (08) : 7655 - 7661
  • [6] Quantum Confined Stark Effect in Single Self-Assembled CdTe Quantum Dots
    Klopotowski, L.
    Kudelski, A.
    Wojnar, P.
    Tartakovskii, A. I.
    Skolnick, M. S.
    Krebs, O.
    Voisin, P.
    Karczewski, G.
    Wojtowicz, T.
    PHYSICS OF SEMICONDUCTORS, 2009, 1199 : 347 - +
  • [7] Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature
    Park, KyoungWon
    Deutsch, Zvicka
    Li, J. Jack
    Oron, Dan
    Weiss, Shimon
    COLLOIDAL NANOCRYSTALS FOR BIOMEDICAL APPLICATIONS VIII, 2013, 8595
  • [8] Spectral diffusion of neutral and charged exciton transitions in single CdSe/ZnS nanocrystals due to quantum-confined Stark effect
    Ihara, Toshiyuki
    Kanemitsu, Yoshihiko
    PHYSICAL REVIEW B, 2014, 90 (19):
  • [9] Quantum-confined stark effects in a single GaN quantum dot
    State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
    Chin. Phys. Lett., 2008, 7 (2628-2630): : 2628 - 2630
  • [10] Quantum confined stark effect in coupled - Cavity VCSELs
    Panajotov, K
    Badilita, V
    Carlin, JF
    Thienpont, H
    Veretennicoff, I
    MICRO-OPTICS, VCSELS, AND PHOTONIC INTERCONNECTS, 2004, 5453 : 197 - 208