Orbital angular momentum multiplication in plasmonic vortex cavities

被引:24
作者
Spektor, Grisha [1 ,2 ,3 ]
Prinz, Eva [4 ,5 ]
Hartelt, Michael [4 ,5 ]
Mahro, Anna-Katharina [4 ,5 ]
Aeschlimann, Martin [4 ,5 ]
Orenstein, Meir [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] NIST, Time & Frequency Div, Boulder, CO 80305 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] Univ Kaiserslautern, Dept Phys, Erwin Schroedinger Str 46, D-67663 Kaiserslautern, Germany
[5] Univ Kaiserslautern, Res Ctr OPTIMAS, Erwin Schroedinger Str 46, D-67663 Kaiserslautern, Germany
关键词
OPTICAL NEAR-FIELD; MICROSCOPY; SURFACES; DEVICES; LIGHT; LENS;
D O I
10.1126/sciadv.abg5571
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here, we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vortex pulses with increasing topological charge as a function of time. We track the spatiotemporal dynamics of these angularly decelerating plasmon pulse train within the cavities for over 300 femtoseconds using time-resolved photoemission electron microscopy, showing that the angular momentum grows by multiples of the chiral order of the cavity. The introduction of this degree of freedom to tame orbital angular momentum delivered by plasmonic vortices could miniaturize pump probe-like quantum initialization schemes, increase the torque exerted by plasmonic tweezers, and potentially achieve vortex lattice cavities with dynamically evolving topology.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings
    Zheng, Shuang
    Wang, Jian
    SCIENTIFIC REPORTS, 2017, 7
  • [42] Accuracy Recognition of Orbital Angular Momentum of Dual-Mode Vortex Beams
    Ye Yuer
    Li Junyi
    Cao Meng
    Xia Yong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (18)
  • [43] Orbital Angular Momentum of Vortex Fields in Corrugated Cylindrical Waveguide Hybrid Mode
    Kawaguchi, Hideki
    Kubo, Shin
    Nakamura, Hiroaki
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2023, 33 (02): : 118 - 121
  • [44] Shaping and processing the vortex spectra of singular beams with anomalous orbital angular momentum
    Volyar, A. V.
    Bretsko, M., V
    Akimova, Ya E.
    Egorov, Yu A.
    COMPUTER OPTICS, 2019, 43 (04) : 517 - 527
  • [45] Restriction on orbital angular momentum distribution: a role of media in vortex beams propagation
    Zhang, Tao
    Liu, Yi-Dong
    Yang, Kuo
    Wang, Jiandong
    Liu, Pusheng
    Yang, Yuanjie
    OPTICS EXPRESS, 2018, 26 (13): : 17227 - 17235
  • [46] Orbital angular momentum density of a general Lorentz-Gauss vortex beam
    Zhou, Guoquan
    Ji, Zhiyue
    Ru, Guoyun
    LASER PHYSICS, 2016, 26 (07)
  • [47] Three-dimensional measurements of a millimeter wave orbital angular momentum vortex
    Schemmel, Peter
    Maccalli, Stefania
    Pisano, Giampaolo
    Maffei, Bruno
    Ng, Ming Wah Richard
    OPTICS LETTERS, 2014, 39 (03) : 626 - 629
  • [48] Efficient orbital angular momentum vortex beam generation by generalized coding metasurface
    Zheng, Qiqi
    Li, Yongfeng
    Han, Yajuan
    Feng, Maochang
    Pang, Yongqiang
    Wang, Jiafu
    Ma, Hua
    Qu, Shaobo
    Zhang, Jieqiu
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (02):
  • [49] Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring
    Wang, Shuai
    Deng, Zi-Lan
    Cao, Yaoyu
    Hu, Dejiao
    Xu, Yi
    Cai, Boyuan
    Jin, Long
    Bao, Yuan
    Wang, Xiaolei
    Li, Xiangping
    IEEE PHOTONICS JOURNAL, 2018, 10 (01):
  • [50] Recognizing the orbital angular momentum (OAM) of vortex beams from speckle patterns
    Wang, Zhiyuan
    Lai, Xuetian
    Huang, Huiling
    Wang, Xiaoyan
    Li, Haoran
    Chen, Ziyang
    Han, Jun
    Pu, Jixiong
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (04)