Orbital angular momentum multiplication in plasmonic vortex cavities

被引:24
|
作者
Spektor, Grisha [1 ,2 ,3 ]
Prinz, Eva [4 ,5 ]
Hartelt, Michael [4 ,5 ]
Mahro, Anna-Katharina [4 ,5 ]
Aeschlimann, Martin [4 ,5 ]
Orenstein, Meir [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] NIST, Time & Frequency Div, Boulder, CO 80305 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] Univ Kaiserslautern, Dept Phys, Erwin Schroedinger Str 46, D-67663 Kaiserslautern, Germany
[5] Univ Kaiserslautern, Res Ctr OPTIMAS, Erwin Schroedinger Str 46, D-67663 Kaiserslautern, Germany
关键词
OPTICAL NEAR-FIELD; MICROSCOPY; SURFACES; DEVICES; LIGHT; LENS;
D O I
10.1126/sciadv.abg5571
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here, we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vortex pulses with increasing topological charge as a function of time. We track the spatiotemporal dynamics of these angularly decelerating plasmon pulse train within the cavities for over 300 femtoseconds using time-resolved photoemission electron microscopy, showing that the angular momentum grows by multiples of the chiral order of the cavity. The introduction of this degree of freedom to tame orbital angular momentum delivered by plasmonic vortices could miniaturize pump probe-like quantum initialization schemes, increase the torque exerted by plasmonic tweezers, and potentially achieve vortex lattice cavities with dynamically evolving topology.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Control of orbital angular momentum with partially coherent vortex beams
    Zhang, Yongtao
    Cai, Yangjian
    Gbur, Greg
    OPTICS LETTERS, 2019, 44 (15) : 3617 - 3620
  • [42] Orbital angular momentum detection device for vortex microwave photons
    Chao Zhang
    Xuefeng Jiang
    Zheyuan Wang
    Yuanhe Wang
    Qiuli Wu
    Xiangdong Xie
    Wanyu Tian
    Communications Engineering, 2 (1):
  • [43] A Reflectarray for Generating Wideband Orbital Angular Momentum Vortex Wave
    Sun, Lu-Yang
    Zhao, Yong-Jiu
    He, Zheng
    2020 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT 2020 ONLINE), 2020,
  • [44] Generation of Orbital Angular Momentum Beams for Electromagnetic Vortex Imaging
    Liu, Kang
    Cheng, Yongqiang
    Li, Xiang
    Qin, Yuliang
    Wang, Hongqiang
    Jiang, Yanwen
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2016, 15 : 1873 - 1876
  • [45] Vortex beam: generation and detection of orbital angular momentum [Invited]
    白毅华
    吕浩然
    付鑫
    杨元杰
    ChineseOpticsLetters, 2022, 20 (01) : 138 - 152
  • [46] Optical vortex fields with an arbitrary orbital angular momentum orientation
    Meng, Xindong
    Hu, Yaodan
    Wan, Chenhao
    Zhan, Qiwen
    OPTICS LETTERS, 2022, 47 (17) : 4568 - 4571
  • [47] Spatiotemporal Acoustic Vortex Beams with Transverse Orbital Angular Momentum
    Ge, Hao
    Liu, Shuai
    Xu, Xiang-Yuan
    Long, Zi-Wei
    Tian, Yuan
    Liu, Xiao-Ping
    Lu, Ming-Hui
    Chen, Yan-Feng
    PHYSICAL REVIEW LETTERS, 2023, 131 (01)
  • [48] Optical vortex parametric laser with a versatile orbital angular momentum
    Araki, Shungo
    Mamuti, Roukuya
    Suzuki, Kensuke
    Nishida, Shigeki
    Miyamoto, Katsuhiko
    Omatsu, Takashige
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [49] Detection of the orbital angular momentum of fractional optical vortex beams
    Department of Optoelectronic Engineering, Huaqiao University, Quanzhou 362021, China
    Guangdianzi Jiguang, 2009, 11 (1478-1482):
  • [50] Quantitative orbital angular momentum measurement of perfect vortex beams
    Pinnell, Jonathan
    Rodriguez-Fajardo, Valeria
    Forbes, Andrew
    OPTICS LETTERS, 2019, 44 (11) : 2736 - 2739