Orbital angular momentum multiplication in plasmonic vortex cavities

被引:24
|
作者
Spektor, Grisha [1 ,2 ,3 ]
Prinz, Eva [4 ,5 ]
Hartelt, Michael [4 ,5 ]
Mahro, Anna-Katharina [4 ,5 ]
Aeschlimann, Martin [4 ,5 ]
Orenstein, Meir [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] NIST, Time & Frequency Div, Boulder, CO 80305 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] Univ Kaiserslautern, Dept Phys, Erwin Schroedinger Str 46, D-67663 Kaiserslautern, Germany
[5] Univ Kaiserslautern, Res Ctr OPTIMAS, Erwin Schroedinger Str 46, D-67663 Kaiserslautern, Germany
关键词
OPTICAL NEAR-FIELD; MICROSCOPY; SURFACES; DEVICES; LIGHT; LENS;
D O I
10.1126/sciadv.abg5571
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here, we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vortex pulses with increasing topological charge as a function of time. We track the spatiotemporal dynamics of these angularly decelerating plasmon pulse train within the cavities for over 300 femtoseconds using time-resolved photoemission electron microscopy, showing that the angular momentum grows by multiples of the chiral order of the cavity. The introduction of this degree of freedom to tame orbital angular momentum delivered by plasmonic vortices could miniaturize pump probe-like quantum initialization schemes, increase the torque exerted by plasmonic tweezers, and potentially achieve vortex lattice cavities with dynamically evolving topology.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Orbital Angular Momentum of Structured Vortex Beams Induced by Intensity Singularity
    Hu, Juntao
    Wei, Wenjun
    Li, Xinzhong
    Shen, Yijie
    Zhan, Qiwen
    Li, Guixin
    Qian, Yixian
    LASER & PHOTONICS REVIEWS, 2025, 19 (06)
  • [32] Single beam optical vortex tweezers with tunable orbital angular momentum
    Gecevicius, Mindaugas
    Drevinskas, Rokas
    Beresna, Martynas
    Kazansky, Peter G.
    APPLIED PHYSICS LETTERS, 2014, 104 (23)
  • [33] Topological orbital angular momentum extraction and twofold protection of vortex transport
    Hu, Zhichan
    Bongiovanni, Domenico
    Wang, Ziteng
    Wang, Xiangdong
    Song, Daohong
    Xu, Jingjun
    Morandotti, Roberto
    Buljan, Hrvoje
    Chen, Zhigang
    NATURE PHOTONICS, 2025, 19 (02) : 162 - 169
  • [34] Acoustic-vortex generation through orbital angular momentum transfer
    Amiri, Rahim
    Mahdavi, Mahboubeh
    Mahmoudi, Mohammad
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [35] Optical spin-to-orbital plasmonic angular momentum conversion in subwavelength apertures
    Brandao, P. A.
    Cavalcanti, S. B.
    OPTICS LETTERS, 2013, 38 (06) : 920 - 922
  • [36] Measurement of Orbital Angular Momentum by Self-Interference Using a Plasmonic Metasurface
    Chen, Xiaolin
    Zhou, Hailong
    Liu, Mian
    Dong, Jianji
    IEEE PHOTONICS JOURNAL, 2016, 8 (01):
  • [37] Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface
    Yang, Kunpeng
    Pu, Mingbo
    Li, Xiong
    Ma, Xiaoliang
    Luo, Jun
    Gao, Hui
    Luo, Xiangang
    NANOSCALE, 2016, 8 (24) : 12267 - 12271
  • [38] Strong Chiral Response of Chiral Plasmonic Nanoparticles to Photonic Orbital Angular Momentum
    Lim, Yae-Chan
    Kim, Ryeong Myeong
    Han, Jeong Hyun
    Aharonovich, Igor
    Nam, Ki Tae
    Kim, Sejeong
    ADVANCED OPTICAL MATERIALS, 2025, 13 (05):
  • [39] Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum
    Wang, Yu
    Zhao, Peng
    Feng, Xue
    Xu, Yuntao
    Liu, Fang
    Cui, Kaiyu
    Zhang, Wei
    Huang, Yidong
    SCIENTIFIC REPORTS, 2016, 6
  • [40] Orbital angular momentum spectrum of antenna vortex beam based on loop integration
    Yang, Guang
    Zhang, Lei
    Li, Weiwen
    Liu, Qing Huo
    AIP ADVANCES, 2021, 11 (11)