Orbital angular momentum multiplication in plasmonic vortex cavities

被引:24
|
作者
Spektor, Grisha [1 ,2 ,3 ]
Prinz, Eva [4 ,5 ]
Hartelt, Michael [4 ,5 ]
Mahro, Anna-Katharina [4 ,5 ]
Aeschlimann, Martin [4 ,5 ]
Orenstein, Meir [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] NIST, Time & Frequency Div, Boulder, CO 80305 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] Univ Kaiserslautern, Dept Phys, Erwin Schroedinger Str 46, D-67663 Kaiserslautern, Germany
[5] Univ Kaiserslautern, Res Ctr OPTIMAS, Erwin Schroedinger Str 46, D-67663 Kaiserslautern, Germany
关键词
OPTICAL NEAR-FIELD; MICROSCOPY; SURFACES; DEVICES; LIGHT; LENS;
D O I
10.1126/sciadv.abg5571
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here, we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vortex pulses with increasing topological charge as a function of time. We track the spatiotemporal dynamics of these angularly decelerating plasmon pulse train within the cavities for over 300 femtoseconds using time-resolved photoemission electron microscopy, showing that the angular momentum grows by multiples of the chiral order of the cavity. The introduction of this degree of freedom to tame orbital angular momentum delivered by plasmonic vortices could miniaturize pump probe-like quantum initialization schemes, increase the torque exerted by plasmonic tweezers, and potentially achieve vortex lattice cavities with dynamically evolving topology.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits
    Mei, Shengtao
    Huang, Kun
    Liu, Hong
    Qin, Fei
    Mehmood, Muhammad Q.
    Xu, Zhengji
    Hong, Minghui
    Zhang, Daohua
    Teng, Jinghua
    Danner, Aaron
    Qiu, Cheng-Wei
    NANOSCALE, 2016, 8 (04) : 2227 - 2233
  • [22] Measuring the orbital angular momentum states of vortex beams with defocusing intensity
    Pan, Chao
    Li, Lianghai
    Zhao, Yiming
    Yu, Yong
    Dai, Xuebing
    LASER PHYSICS, 2020, 30 (08)
  • [23] Anomalous Bessel vortex beam: modulating orbital angular momentum with propagation
    Yang, Yuanjie
    Zhu, Xinlei
    Zeng, Jun
    Lu, Xingyuan
    Zhao, Chengliang
    Cai, Yangjian
    NANOPHOTONICS, 2018, 7 (03) : 677 - 682
  • [24] Orbital Angular Momentum Reversal and Asymmetry in Acoustic Vortex Beam Reflection
    Zou, Zheguang
    Lirette, Robert
    Zhang, Likun
    PHYSICAL REVIEW LETTERS, 2020, 125 (07)
  • [25] Multicolor concentric ultrafast vortex beams with controllable orbital angular momentum
    Huang, Shunlin
    Wang, Peng
    Shen, Xiong
    Liu, Jun
    Li, Ruxin
    APPLIED PHYSICS LETTERS, 2022, 120 (06)
  • [26] Multiplication and division of orbital angular momentum beams by Fermat's spiral transformation
    Zeng, Zishuai
    Pang, Zihao
    Pan, Keming
    Xu, Jia
    Zhao, Daomu
    PHOTONICS RESEARCH, 2023, 11 (02) : 165 - 172
  • [27] Diffraction of relativistic vortex harmonics with fractional average orbital angular momentum
    Li, Shasha
    Shen, Baifei
    Wang, Wenpeng
    Bu, Zhigang
    Zhang, Hao
    Zhang, Hui
    Zhai, Shuhua
    CHINESE OPTICS LETTERS, 2019, 17 (05)
  • [28] Vortex beam of tilted orbital angular momentum generated from grating
    Qiu, Jing
    Shen, Baifei
    Zhang, Xiaomei
    Bu, Zhigang
    Yi, Longqing
    Zhang, Lingang
    Xu, Zhizhan
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (10)
  • [29] Management of the orbital angular momentum of vortex beams in a quadratic nonlinear interaction
    Bovino, F. A.
    Braccini, M.
    Bertolotti, M.
    Sibilia, C.
    OPTICS COMMUNICATIONS, 2011, 284 (10-11) : 2587 - 2593
  • [30] Mechanical Evidence of the Orbital Angular Momentum to Energy Ratio of Vortex Beams
    Demore, Christine E. M.
    Yang, Zhengyi
    Volovick, Alexander
    Cochran, Sandy
    MacDonald, Michael P.
    Spalding, Gabriel C.
    PHYSICAL REVIEW LETTERS, 2012, 108 (19)