Bacterial hyperpolarization modulated by polyoxometalates for solutions of antibiotic resistance

被引:22
|
作者
Chen, Kun [1 ,2 ]
Yu, Qiang [1 ,2 ]
Liu, Yuan [1 ,2 ]
Yin, Panchao [1 ,2 ]
机构
[1] South China Univ Technol, Sch Mol Sci & Engn, South China Adv Inst Soft Matter Sci & Technol, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Guangdong Prov Key Lab Funct & Intelligent Hybrid, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Polyoxometalates; Bacterial hyperpolarization; Antibiotic resistance; Ion influx; Anti-biotics; Ionic interaction; HYDRATION SHELL; NANOPARTICLES; COMPLEXES; NOISE; ION;
D O I
10.1016/j.jinorgbio.2021.111463
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Developing strategies against the antibiotic resistance is a major global challenge for public health. Here, we report the synergy of the combination of Preyssler-type polyoxometalates (POMs) ([NaP5W30O110](14-)) or [AgP5W30O110](14-)) ) and ribosome-targeting antibiotics for high antibacterial efficiency with low risk of antibiotic resistance. Due to their ultra-small sizes and active surface ligands, POM anions show strong affinity to bacterial cell membrane and impose hyperpolarization of the bacterial cells as well as the decrease of Mg2+ influx by blocking Mg2+ transporters, which finally lead to the structural perturbations of ribosomes and instability of bacterial structures. The bacterial growth can, therefore, be regulated by the presence of POMs: a fraction of Bacillus subtilis shifted to a 'dormant', slow-growing cellular state (an extended lag phase) upon the application of subinhibitory concentration of POMs. An approach to combat antibiotic resistant bacteria by applying POMs at their early growth phase followed by antibiotic exposure is validated, and its high efficiency for bacterial control is confirmed.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Bacterial Enzymes and Antibiotic Resistance
    Egorov, A. M.
    Ulyashova, M. M.
    Rubtsova, M. Yu.
    ACTA NATURAE, 2018, 10 (04): : 33 - 48
  • [2] Combating Bacterial Resistance by Polymers and Antibiotic Composites
    Olaru, Iulia
    Stefanache, Alina
    Gutu, Cristian
    Lungu, Ionut Iulian
    Mihai, Cozmin
    Grierosu, Carmen
    Calin, Gabriela
    Marcu, Constantin
    Ciuhodaru, Tudor
    POLYMERS, 2024, 16 (23)
  • [3] Antibiotic resistance of bacterial biofilms
    Hoiby, Niels
    Bjarnsholt, Thomas
    Givskov, Michael
    Molin, Soren
    Ciofu, Oana
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2010, 35 (04) : 322 - 332
  • [4] Antibiotic resistance and bacterial biofilm
    Grande, Rossella
    Puca, Valentina
    Muraro, Raffaella
    EXPERT OPINION ON THERAPEUTIC PATENTS, 2020, 30 (12) : 897 - 900
  • [5] Antibiotic Prescription and Bacterial Resistance
    Shiva, Farideh
    ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES, 2015, 3 (03):
  • [6] Bacterial vaccines and antibiotic resistance
    Henriques-Normark, Birgitta
    Normark, Staffan
    UPSALA JOURNAL OF MEDICAL SCIENCES, 2014, 119 (02) : 205 - 208
  • [7] Antibiotic resistance in ocular bacterial pathogens
    Sharma, S.
    INDIAN JOURNAL OF MEDICAL MICROBIOLOGY, 2011, 29 (03) : 218 - 222
  • [8] Bacterial Antibiotic Resistance: on the Cusp of a Post-antibiotic World
    Sprigg, Kameron
    Pietrangeli, Carolynn E.
    CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES, 2019, 11 (01) : 42 - 57
  • [9] Bacterial Antibiotic Resistance: on the Cusp of a Post-antibiotic World
    Kameron Sprigg
    Carolynn E. Pietrangeli
    Current Treatment Options in Infectious Diseases, 2019, 11 : 42 - 57
  • [10] Proteome studies of bacterial antibiotic resistance mechanisms
    Vranakis, Iosif
    Goniotakis, Ioannis
    Psaroulaki, Anna
    Sandalakis, Vassilios
    Tselentis, Yannis
    Gevaert, Kris
    Tsiotis, Georgios
    JOURNAL OF PROTEOMICS, 2014, 97 : 88 - 99