On application of nonparametric regression estimation to options pricing

被引:0
|
作者
Kohler, Michael [1 ]
Krzyiak, Adam [2 ]
Walk, Harro [3 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Petersenstr 30, D-64289 Darmstadt, Germany
[2] Concordia Univ, Dept Comp Sci, Montreal, PQ H3G 1M8, Canada
[3] Univ Stuttgart, Fachbereich Math, D-70569 Stuttgart, Germany
来源
2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4 | 2009年
关键词
MONTE-CARLO ALGORITHM; AMERICAN OPTIONS; SIMULATION;
D O I
10.1109/ISIT.2009.5205821
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider American options also called Bermudan options in discrete time. We use the dual approach to derive upper bounds on the price of such options using only a reduced number of nested Monte Carlo steps. The key idea is to use nonparametric regression to estimate continuation values and all other required conditional expectations and to combine the resulting estimate with another estimate computed by using only a reduced number of nested Monte Carlo steps. The mean value of the resulting estimate is an upper bound on the option price. One can show that the estimates of the option prices are universally consistent, i.e., they converge to the true price regardless of the structure of the continuation values. The finite sample behavior is validated by experiments on simulated data.
引用
收藏
页码:1579 / +
页数:3
相关论文
共 50 条
  • [31] On nonparametric variogram estimation
    Tae Yoon Kim
    Jeong-Soo Park
    Journal of the Korean Statistical Society, 2012, 41 : 399 - 413
  • [32] Pricing Early-Exercise Options Using Genetic Optimization
    Powell, Stephen G.
    JOURNAL OF DERIVATIVES, 2013, 20 (03): : 43 - 59
  • [33] An Iteration Algorithm for American Options Pricing Based on Reinforcement Learning
    Li, Nan
    SYMMETRY-BASEL, 2022, 14 (07):
  • [34] Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
    Kohler, Michael
    Krzyzak, Adam
    Walk, Harro
    STATISTICS & RISK MODELING, 2008, 26 (04) : 275 - 288
  • [35] Adaptive θ-methods for pricing American options
    Khaliq, Abdul Q. M.
    Voss, David A.
    Kazmi, Kamran
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (01) : 210 - 227
  • [36] Pricing Parisian down-and-in options
    Zhu, Song-Ping
    Le, Nhat-Tan
    Chen, Wenting
    Lu, Xiaoping
    APPLIED MATHEMATICS LETTERS, 2015, 43 : 19 - 24
  • [37] Pricing American options fitting the smile
    Dempster, MAH
    Richards, DG
    MATHEMATICAL FINANCE, 2000, 10 (02) : 157 - 177
  • [38] Static hedging and pricing American options
    Chung, San-Lin
    Shih, Pai-Ta
    JOURNAL OF BANKING & FINANCE, 2009, 33 (11) : 2140 - 2149
  • [39] Power approximation for pricing American options
    Hassan, Noura El
    Maddah, Bacel
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2024,
  • [40] Pricing Bermudan options using low-discrepancy mesh methods
    Boyle, Phelim P.
    Kolkiewicz, Adam W.
    Tan, Ken Seng
    QUANTITATIVE FINANCE, 2013, 13 (06) : 841 - 860