Edge enriched cobalt ferrite nanorods for symmetric/asymmetric supercapacitive charge storage

被引:32
作者
Lalwani, Shubra [1 ]
Marichi, Ram Bhagat [1 ]
Mishra, Monu [2 ]
Gupta, Govind [2 ]
Singh, Gurmeet [1 ]
Sharma, Raj Kishore [1 ]
机构
[1] Univ Delhi, Dept Chem, Delhi 110007, India
[2] Natl Phys Lab, New Delhi 110012, India
关键词
Cobalt ferrite; Porous nanorods; Active sites; Edges; Asymmetric supercapacitor; HIGH-ENERGY DENSITY; PERFORMANCE SUPERCAPACITOR; GRAPHENE NANORIBBONS; FACILE SYNTHESIS; NICKEL FOAM; COFE2O4; OXIDE; COMPOSITE; NANOSHEETS; NANOCOMPOSITES;
D O I
10.1016/j.electacta.2018.07.008
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
For maximum and efficient charge storage and delivery, porous nanorods with active sites can offer a unique set of advantages. Herein, hierarchically porous (0.2-200 nm) cobalt ferrite (CoFe2O4) nanorods are hydrothermally prepared by tuning oleic acid concentration (100-500 mu L with subsequent annealing (400 degrees C). These hierarchical pores (with edges and cavities) raise the specific surface area of CoFe2O4 nanorods to 154 m(2)g(-1). In addition, 80% of CoFe2O4 sites become accessible boosting the capacitance to a high value (460.5 Fg(-1) at 1.0 Ag-1), while retaining excellent cyclic stability (95.8% for 5000 cycles). Maximum pseudocapacitive contribution from these electrochemically active sites is ensured by rapid diffusion of electrolytic OH- ions (5.8 x 10(-8)cm(2)s(-1)). Moreover, on assembling these nanorods as a positive electrode in asymmetric configuration (graphene nanoribbons as negative electrode), the cell exhibits an outstanding energy density (33.5 Wh kg(-1) at 727.8 W kg(-1)), almost double of its symmetric (16.5 Wh kg(-1) at 288 W kg(-1)) counterpart. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:708 / 717
页数:10
相关论文
共 62 条
[1]   Enhanced supercapacitor performance by incorporating nickel in manganese oxide [J].
Ahuja, Preety ;
Ujjain, Sanjeev Kumar ;
Sharma, Raj Kishore ;
Singh, Gurmeet .
RSC ADVANCES, 2014, 4 (100) :57192-57199
[2]  
Alshehri S. M., 2017, NITROGEN DOPED COBAL, P2952
[3]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[4]  
Balducci A., 2017, GUIDELINE REPORTING, V164, P2017
[5]   Multi layered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes [J].
Biswas, Sanjib ;
Drzal, Lawrence T. .
CHEMISTRY OF MATERIALS, 2010, 22 (20) :5667-5671
[6]   To Be or Not To Be Pseudocapacitive? [J].
Brousse, Thierry ;
Belanger, Daniel ;
Long, Jeffrey W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (05) :A5185-A5189
[7]   Thermal-induced growth of RuO2 nanorods from a binary Ru-Ti oxide composite and alteration in supercapacitive characteristics [J].
Chen, I-Li ;
Chen, Tsan-Yao ;
Hu, Chi-Chang ;
Lee, Chih-Hao .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (06) :2039-2049
[8]  
Conway B E, 1999, ELECTROCHEMICAL SUPE
[9]   Supercapacitors from Free-Standing Polypyrrole/Graphene Nanocomposites [J].
de Oliveira, Helinando P. ;
Sydlik, Stefanie A. ;
Swager, Timothy M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (20) :10270-10276
[10]  
Dumestre F, 2002, ANGEW CHEM INT EDIT, V41, P4286, DOI 10.1002/1521-3773(20021115)41:22<4286::AID-ANIE4286>3.0.CO