Finite volume approximation of the effective diffusion matrix: The case of independent bond disorder

被引:21
作者
Caputo, P
Ioffe, D
机构
[1] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[2] Technion Israel Inst Technol, Fac Ind Engn, IL-32000 Haifa, Israel
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2003年 / 39卷 / 03期
基金
以色列科学基金会;
关键词
effective diffusion coefficient; bond disorder; corrector field;
D O I
10.1016/S0246-0203(02)00016-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider uniformly elliptic random walk on Z(d) with independent jump rates across nearest neighbour bonds of the lattice. We show that the infinite volume effective diffusion matrix can be almost surely recovered as the limit of finite volume periodized effective diffusion matrices. (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:505 / 525
页数:21
相关论文
共 19 条
[1]   WEAK-CONVERGENCE FOR REVERSIBLE RANDOM-WALKS IN A RANDOM ENVIRONMENT [J].
BOIVIN, D .
ANNALS OF PROBABILITY, 1993, 21 (03) :1427-1440
[2]  
BOVIN D, 1991, ERGOD THEOR DYN, V11, P19
[3]   AN INVARIANCE-PRINCIPLE FOR REVERSIBLE MARKOV-PROCESSES - APPLICATIONS TO RANDOM MOTIONS IN RANDOM-ENVIRONMENTS [J].
DEMASI, A ;
FERRARI, PA ;
GOLDSTEIN, S ;
WICK, WD .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) :787-855
[4]   Large deviations and concentration properties for Δφ interface models [J].
Deuschel, JD ;
Giacomin, G ;
Ioffe, D .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (01) :49-111
[5]   Motion by mean curvature from the Ginzburg-Landau del phi interface model [J].
Funaki, T ;
Spohn, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (01) :1-36
[6]  
Georgii H.-O., 1988, DEGRUYTER STUDIES MA, V9
[7]  
GIACOMIN G, IN PRESS ANN PROBAB
[8]  
Gilbarg D., 1997, ELLIPTIC PARTIAL DIF
[9]  
Jikov V. V., 1994, Homogenization of differential operators and integral functionals, DOI 10.1007/978-3-642-84659-5
[10]   CENTRAL-LIMIT-THEOREM FOR ADDITIVE-FUNCTIONALS OF REVERSIBLE MARKOV-PROCESSES AND APPLICATIONS TO SIMPLE EXCLUSIONS [J].
KIPNIS, C ;
VARADHAN, SRS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (01) :1-19