Design of a general propose neuro-fuzzy controller by using modified adaptive-network-based fuzzy inference system

被引:20
作者
Peymanfar, Alireza [1 ]
Khoei, Abdollah [1 ]
Hadidi, Kheyrollah [1 ]
机构
[1] Urmia Univ, Microelect Res Lab, Orumiyeh 57159, Iran
关键词
WTA; Current mode multiplier; CMOS neuro-fuzzy controllers; ANFIS; Learning rule;
D O I
10.1016/j.aeue.2009.02.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new general purpose neuro-fuzzy controller to realize adaptive-network-based fuzzy inference system (ANFIS) architecture. A two input, single output, 16 rules ANFIS architecture is designed in 0.35 mu m standard CMOS technology. This controller can also be used as a standard (Mamdani) type fuzzy logic controller (FLC) having bell-shaped input and singleton output membership functions. Mixed mode realization of the circuit makes the design programmable and extendable, while having relatively low power consumption. Current mode realization of the rule base and defuzzifier circuits leads to simple and intuitive configurations. For a particular set of programming parameters, simulation results of the controller using HSPICE simulator and level 49 parameters (BSIM3V3), shows an average power consumption of 8 mW and an RMS error of 1.3% compared to ideal results obtained from MATLAB. (C) 2009 Elsevier GmbH. All rights reserved.
引用
收藏
页码:433 / 442
页数:10
相关论文
共 13 条
[1]   A digital CMOS fuzzy logic controller chip using new fuzzifier and max circuit [J].
Aminifar, S. ;
Khoei, A. ;
Haidi, Kh. ;
Yosefi, Gh. .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2006, 60 (08) :557-566
[2]  
ARELLANO O, 2000, IEEE INT S CIRC SYST
[3]  
BATURONE I, 1991, IEEE INT C
[4]  
BULT K, 1987, IEEE J SOLID STATE C, V22
[5]  
CHEN Y, 2001, IEEE T FUZZY SYSTEMS, V11
[6]   On designing mixed-signal programmable fuzzy logic controllers as embedded subsystems, in standard CMOS technologies [J].
Dualibe, C ;
Jespers, P ;
Verleysen, M .
14TH SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, PROCEEDINGS, 2001, :194-200
[7]  
Franchi Eleonora, 1998, IEEE J SOLID STATE C, V33
[8]   ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM [J].
JANG, JSR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03) :665-685
[9]  
JESUS R, 2003, IEEE T NEURAL NETWOR, V14
[10]  
MOTTAGHI M, 2007, IEICE T SPECIAL SE C, V90