Renyi Generalization of the Accessible Entanglement Entropy

被引:85
作者
Barghathi, Hatem [1 ]
Herdman, C. M. [2 ]
Del Maestro, Adrian [1 ,3 ]
机构
[1] Univ Vermont, Dept Phys, Burlington, VT 05405 USA
[2] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA
[3] Univ Leipzig, Inst Theoret Phys, D-04103 Leipzig, Germany
基金
美国国家科学基金会;
关键词
MANY-BODY SYSTEM; QUANTUM; UNCERTAINTY; INFORMATION; OPERATORS;
D O I
10.1103/PhysRevLett.121.150501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Operationally accessible entanglement in bipartite systems of indistinguishable particles could be reduced due to restrictions on the allowed local operations as a result of particle number conservation. In order to quantify this effect, Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] introduced an operational measure of the von Neumann entanglement entropy. Motivated by advances in measuring Renyi entropies in quantum many-body systems subject to conservation laws, we derive a generalization of the operationally accessible entanglement that is both computationally and experimentally measurable. Using the Widom theorem, we investigate its scaling with the size of a spatial subregion for free fermions and find a logarithmically violated area law scaling, similar to the spatial entanglement entropy, with at most a double-log leading-order correction. A modification of the correlation matrix method confirms our findings in systems of up to 10(5) particles.
引用
收藏
页数:6
相关论文
共 50 条
[41]   Relating different quantum generalizations of the conditional Renyi entropy [J].
Tomamichel, Marco ;
Berta, Mario ;
Hayashi, Masahito .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
[42]   Entanglement entropy and anomaly inflow [J].
Hughes, Taylor L. ;
Leigh, Robert G. ;
Parrikar, Onkar ;
Ramamurthy, Srinidhi T. .
PHYSICAL REVIEW D, 2016, 93 (06)
[43]   Entanglement entropy in Schwarzschild spacetime [J].
Matsuo, Yoshinori .
PROCEEDINGS OF THE EAST ASIA JOINT SYMPOSIUM ON FIELDS AND STRINGS 2021, 2022, :93-101
[44]   Algebraic approach to entanglement and entropy [J].
Balachandran, A. P. ;
Govindarajan, T. R. ;
de Queiroz, Amilcar R. ;
Reyes-Lega, A. F. .
PHYSICAL REVIEW A, 2013, 88 (02)
[45]   Linearity of holographic entanglement entropy [J].
Almheiri, Ahmed ;
Dong, Xi ;
Swingle, Brian .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (02)
[46]   Relative Entropy and Squashed Entanglement [J].
Li, Ke ;
Winter, Andreas .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) :63-80
[47]   Entanglement entropy: a perturbative calculation [J].
Rosenhaus, Vladimir ;
Smolkin, Michael .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (12)
[48]   Entanglement entropy in collective models [J].
Vidal, Julien ;
Dusuel, Sebastien ;
Barthel, Thomas .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[49]   HOLOGRAPHIC PHOTOSYNTHESIS AND ENTANGLEMENT ENTROPY [J].
Aref'eva, Irina ;
Volovich, Igor .
INFINITE DIMENSIONAL ANALYSIS, QUANTUM PROBABILITY AND RELATED TOPICS, IDAQP 2024, 2024, :231-250
[50]   Production of Entanglement Entropy by Decoherence [J].
Merkli, M. ;
Berman, G. P. ;
Sayre, R. T. ;
Wang, X. ;
Nesterov, A. I. .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2018, 25 (01)