Renyi Generalization of the Accessible Entanglement Entropy

被引:85
作者
Barghathi, Hatem [1 ]
Herdman, C. M. [2 ]
Del Maestro, Adrian [1 ,3 ]
机构
[1] Univ Vermont, Dept Phys, Burlington, VT 05405 USA
[2] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA
[3] Univ Leipzig, Inst Theoret Phys, D-04103 Leipzig, Germany
基金
美国国家科学基金会;
关键词
MANY-BODY SYSTEM; QUANTUM; UNCERTAINTY; INFORMATION; OPERATORS;
D O I
10.1103/PhysRevLett.121.150501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Operationally accessible entanglement in bipartite systems of indistinguishable particles could be reduced due to restrictions on the allowed local operations as a result of particle number conservation. In order to quantify this effect, Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] introduced an operational measure of the von Neumann entanglement entropy. Motivated by advances in measuring Renyi entropies in quantum many-body systems subject to conservation laws, we derive a generalization of the operationally accessible entanglement that is both computationally and experimentally measurable. Using the Widom theorem, we investigate its scaling with the size of a spatial subregion for free fermions and find a logarithmically violated area law scaling, similar to the spatial entanglement entropy, with at most a double-log leading-order correction. A modification of the correlation matrix method confirms our findings in systems of up to 10(5) particles.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Equipartition of the entanglement entropy [J].
Xavier, J. C. ;
Alcaraz, F. C. ;
Sierra, G. .
PHYSICAL REVIEW B, 2018, 98 (04)
[32]   Renyi entropy of highly entangled spin chains [J].
Sugino, Fumihiko ;
Korepin, Vladimir .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (28)
[33]   Entanglement entropy and vacuum states in Schwarzschild geometry [J].
Matsuo, Yoshinori .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (06)
[34]   Entanglement entropy of a scalar field in a squeezed state [J].
Katsinis, D. ;
Pastras, G. ;
Tetradis, N. .
JOURNAL OF HIGH ENERGY PHYSICS, 2024, (10)
[35]   A New Generalization of von Neumann Relative Entropy [J].
Li, Jing ;
Cao, Huaixin .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (11) :3405-3424
[36]   Renyi entanglement entropy of Fermi and non-Fermi liquids: Sachdev-Ye-Kitaev model and dynamical mean field theories [J].
Haldar, Arijit ;
Bera, Surajit ;
Banerjee, Sumilan .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[37]   Entropy of a subalgebra of observables and the geometric entanglement entropy [J].
Bianchi, Eugenio ;
Satz, Alejandro .
PHYSICAL REVIEW D, 2019, 99 (08)
[38]   Source coding with escort distributions and Renyi entropy bounds [J].
Bercher, J. -F. .
PHYSICS LETTERS A, 2009, 373 (36) :3235-3238
[39]   Renyi entropy and quantum phase transition in the Dicke model [J].
Romera, E. ;
Nagy, A. .
PHYSICS LETTERS A, 2011, 375 (34) :3066-3069
[40]   On Estimating the Residual Renyi Entropy under Progressive Censoring [J].
Jomhoori, Sarah ;
Yousefzadeh, Fatemeh .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (10-12) :2395-2405