Renyi Generalization of the Accessible Entanglement Entropy

被引:84
作者
Barghathi, Hatem [1 ]
Herdman, C. M. [2 ]
Del Maestro, Adrian [1 ,3 ]
机构
[1] Univ Vermont, Dept Phys, Burlington, VT 05405 USA
[2] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA
[3] Univ Leipzig, Inst Theoret Phys, D-04103 Leipzig, Germany
基金
美国国家科学基金会;
关键词
MANY-BODY SYSTEM; QUANTUM; UNCERTAINTY; INFORMATION; OPERATORS;
D O I
10.1103/PhysRevLett.121.150501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Operationally accessible entanglement in bipartite systems of indistinguishable particles could be reduced due to restrictions on the allowed local operations as a result of particle number conservation. In order to quantify this effect, Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] introduced an operational measure of the von Neumann entanglement entropy. Motivated by advances in measuring Renyi entropies in quantum many-body systems subject to conservation laws, we derive a generalization of the operationally accessible entanglement that is both computationally and experimentally measurable. Using the Widom theorem, we investigate its scaling with the size of a spatial subregion for free fermions and find a logarithmically violated area law scaling, similar to the spatial entanglement entropy, with at most a double-log leading-order correction. A modification of the correlation matrix method confirms our findings in systems of up to 10(5) particles.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Renyi Entropy in Statistical Mechanics [J].
Fuentes, Jesus ;
Goncalves, Jorge .
ENTROPY, 2022, 24 (08)
[22]   On Renyi Entropy Power Inequalities [J].
Ram, Eshed ;
Sason, Igal .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (12) :6800-6815
[23]   Accessible quantification of multiparticle entanglement [J].
Cianciaruso, Marco ;
Bromley, Thomas R. ;
Adesso, Gerardo .
NPJ QUANTUM INFORMATION, 2016, 2
[24]   Renyi formulation of entanglement criteria for continuous variables [J].
Rastegin, Alexey E. .
PHYSICAL REVIEW A, 2017, 95 (04)
[25]   Probing topological order with Renyi entropy [J].
Halasz, Gabor B. ;
Hamma, Alioscia .
PHYSICAL REVIEW A, 2012, 86 (06)
[26]   Estimating Renyi Entropy of Discrete Distributions [J].
Acharya, Jayadev ;
Orlitsky, Alon ;
Suresh, Ananda Theertha ;
Tyagi, Himanshu .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (01) :38-56
[27]   Renyi entropy rate for Gaussian processes [J].
Golshani, Leila ;
Pasha, Einollah .
INFORMATION SCIENCES, 2010, 180 (08) :1486-1491
[28]   Tomographic Renyi entropy of multimode Gaussian states [J].
Man'ko, Margarita A. .
PHYSICA SCRIPTA, 2013, 87 (03)
[29]   On the Entropy Power Inequality for the Renyi Entropy of Order [0,1] [J].
Marsiglietti, Arnaud ;
Melbourne, James .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (03) :1387-1396
[30]   Sum rule for the pseudo-Renyi entropy [J].
Guo, Wu-zhong ;
Zhang, Jiaju .
PHYSICAL REVIEW D, 2024, 109 (10)