Renyi Generalization of the Accessible Entanglement Entropy

被引:83
|
作者
Barghathi, Hatem [1 ]
Herdman, C. M. [2 ]
Del Maestro, Adrian [1 ,3 ]
机构
[1] Univ Vermont, Dept Phys, Burlington, VT 05405 USA
[2] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA
[3] Univ Leipzig, Inst Theoret Phys, D-04103 Leipzig, Germany
基金
美国国家科学基金会;
关键词
MANY-BODY SYSTEM; QUANTUM; UNCERTAINTY; INFORMATION; OPERATORS;
D O I
10.1103/PhysRevLett.121.150501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Operationally accessible entanglement in bipartite systems of indistinguishable particles could be reduced due to restrictions on the allowed local operations as a result of particle number conservation. In order to quantify this effect, Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] introduced an operational measure of the von Neumann entanglement entropy. Motivated by advances in measuring Renyi entropies in quantum many-body systems subject to conservation laws, we derive a generalization of the operationally accessible entanglement that is both computationally and experimentally measurable. Using the Widom theorem, we investigate its scaling with the size of a spatial subregion for free fermions and find a logarithmically violated area law scaling, similar to the spatial entanglement entropy, with at most a double-log leading-order correction. A modification of the correlation matrix method confirms our findings in systems of up to 10(5) particles.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Entanglement Renyi α entropy
    Wang, Yu-Xin
    Mu, Liang-Zhu
    Vedral, Vlatko
    Fan, Heng
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [2] Non-Hermitian Generalization of Renyi Entropy
    Li, Daili
    Zheng, Chao
    ENTROPY, 2022, 24 (11)
  • [3] A Generalization of the Concavity of Renyi Entropy Power
    Guo, Laigang
    Yuan, Chun-Ming
    Gao, Xiao-Shan
    ENTROPY, 2021, 23 (12)
  • [4] Renyi squashed entanglement, discord, and relative entropy differences
    Seshadreesan, Kaushik P.
    Berta, Mario
    Wilde, Mark M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (39)
  • [5] Universal Renyi entanglement entropy of quasiparticle excitations
    Zhang, Jiaju
    Rajabpour, M. A.
    EPL, 2021, 135 (06)
  • [6] A generalization of Renyi entropy for basic probability assignment
    Yu, Ran
    Deng, Yong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (19) : 6991 - 7008
  • [7] Estimating the central charge from the Renyi entanglement entropy
    Bazavov, A.
    Meurice, Y.
    Tsai, S. -W.
    Unmuth-Yockey, J.
    Yang, Li-Ping
    Zhang, Jin
    PHYSICAL REVIEW D, 2017, 96 (03)
  • [8] Probing Renyi entanglement entropy via randomized measurements
    Brydges, Tiff
    Elben, Andreas
    Jurcevic, Petar
    Vermersch, Benoit
    Maier, Christine
    Lanyon, Ben P.
    Zoller, Peter
    Blatt, Rainer
    Roos, Christian F.
    SCIENCE, 2019, 364 (6437) : 260 - +
  • [9] Parameterized entanglement measures based on Renyi-α entropy
    Dai Wei-Peng
    He Kan
    Hou Jin-Chuan
    ACTA PHYSICA SINICA, 2024, 73 (04)
  • [10] New holographic generalization of entanglement entropy
    Nakata, Yoshifumi
    Takayanagi, Tadashi
    Taki, Yusuke
    Tamaoka, Kotaro
    Wei, Zixia
    PHYSICAL REVIEW D, 2021, 103 (02)