Recent advances in nanostructured metal nitrides for water splitting

被引:454
作者
Han, Ning [2 ]
Liu, Pengyun [2 ]
Jiang, Jing [1 ,2 ]
Ai, Lunhong [1 ,2 ]
Shao, Zongping [2 ]
Liu, Shaomin [2 ]
机构
[1] China West Normal Univ, Coll Chem & Chem Engn, Chem Synth & Pollut Control Key Lab Sichuan Prov, Nanchong 637002, Peoples R China
[2] Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn WASM MEC, Perth, WA 6102, Australia
基金
中国国家自然科学基金;
关键词
HYDROGEN EVOLUTION REACTION; OXYGEN REDUCTION REACTION; VISIBLE-LIGHT-DRIVEN; NICKEL-IRON NITRIDE; EFFICIENT BIFUNCTIONAL ELECTROCATALYST; (GA1-XZNX)(N1-XOX) SOLID-SOLUTION; GRAPHENE HYBRID SUPPORT; ACTIVE SURFACE SITES; MOLYBDENUM NITRIDE; TRANSITION-METAL;
D O I
10.1039/c8ta06529b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The gradually dwindling resources of fossil fuels and the urgency to reduce greenhouse gas emissions portray a globally concerning image of our contemporary energy infrastructure with over reliance on coal, gas and oil. The transformation of the current fossil-fuel-based energy system to a more sustainable, renewable and cleaner alternative is desperately required to mitigate climate change. As a carbon-free and clean energy carrier, hydrogen has long been considered as a promising energy option. However, hydrogen does not exist naturally due to its inherently reactive features and has to be cost-effectively produced from hydrogen-containing compounds. Solar or electrochemically driven water splitting is an appealing vision for future sustainable hydrogen production. The state of the art water splitting technology via electro-catalysis is highly dependent on the efficiency of electrocatalysts to promote the oxygen evolution reaction (OER) or hydrogen evolution reaction (HER), a possible limiting step for the overall reaction. Electro-catalysts are currently dominated by these noble metals. To minimize the production cost, it is vital to develop noble-metal free catalysts for water splitting. In this context, metal nitrides have captured the imagination of academic researchers. This review summarizes the recent research progress made in these nanostructured metal nitrides as efficient and cheap catalysts for electrochemical and photo(electro)chemical water splitting. The various synthetic strategies for the fabrication and functionalization of these nanostructured metal nitrides are first presented followed by the introduction of their unique physical, chemical, and electronic properties and their respective applications in facilitating the HER, OER and the overall water splitting reaction. Some engineering perspectives to further enhance the performances of these nanostructured catalysts for water splitting are also discussed. Finally, opportunities for future development are briefly proposed.
引用
收藏
页码:19912 / 19933
页数:22
相关论文
共 179 条
[1]   Hydrogen Evolution Reaction Catalyzed by Transition-Metal Nitrides [J].
Abghoui, Younes ;
Skulason, Egill .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (43) :24036-24045
[2]   Bamboo-Structured Nitrogen-Doped Carbon Nanotube Coencapsulating Cobalt and Molybdenum Carbide Nanoparticles: An Efficient Bifunctional Electrocatalyst for Overall Water Splitting [J].
Ai, Lunhong ;
Su, Jinfeng ;
Wang, Mei ;
Jiang, Jing .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (08) :9912-9920
[3]   A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination [J].
AlOtaibi, B. ;
Fan, S. ;
Vanka, S. ;
Kibria, M. G. ;
Mi, Z. .
NANO LETTERS, 2015, 15 (10) :6821-6828
[4]   Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode [J].
AlOtaibi, B. ;
Nguyen, H. P. T. ;
Zhao, S. ;
Kibria, M. G. ;
Fan, S. ;
Mi, Z. .
NANO LETTERS, 2013, 13 (09) :4356-4361
[5]   Effects of divalent metal ion (Mg2+, Zn2+ and Be2+) doping on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting [J].
Arai, Naoki ;
Saito, Nobuo ;
Nishiyama, Hiroshi ;
Domen, Kazunari ;
Kobayashi, Hisayoshi ;
Sato, Kazunori ;
Inoue, Yasunobu .
CATALYSIS TODAY, 2007, 129 (3-4) :407-413
[6]   Overall water splitting by RuO2-dispersed divalent-ion-doped GaN photocatalysts with d10 electronic configuration [J].
Arai, Naoki ;
Saito, Nobuo ;
Nishiyama, Hiroshi ;
Inoue, Yasunobu ;
Domen, Kazunari ;
Sato, Kazunori .
CHEMISTRY LETTERS, 2006, 35 (07) :796-797
[7]   Phosphorus and Fluorine Co-Doping Induced Enhancement of Oxygen Evolution Reaction in Bimetallic Nitride Nanorods Arrays: Ionic Liquid-Driven and Mechanism Clarification [J].
Bai, Xue ;
Wang, Qin ;
Xu, Guangran ;
Ning, Yunkun ;
Huang, Keke ;
He, Feng ;
Wu, Zhi-jian ;
Zhang, Jun .
CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (66) :16862-16870
[8]   Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting [J].
Balogun, Muhammad-Sadeeq ;
Huang, Yongchao ;
Qiu, Weitao ;
Yang, Hao ;
Ji, Hongbing ;
Tong, Yexiang .
MATERIALS TODAY, 2017, 20 (08) :425-451
[9]   Synthesis and magnetic characterization of CoMoN2 nanoparticles [J].
Bhattacharyya, Sayan ;
Kurian, Sajith ;
Shivaprasad, S. M. ;
Gajbhiye, N. S. .
JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (04) :1107-1116
[10]   Insight into Electrocatalysts as Co-catalysts in Efficient Photocatalytic Hydrogen Evolution [J].
Bi, Wentuan ;
Zhang, Lei ;
Sun, Zhongti ;
Li, Xiaogang ;
Jin, Tao ;
Wu, Xiaojun ;
Zhang, Qun ;
Luo, Yi ;
Wu, Changzheng ;
Xie, Yi .
ACS CATALYSIS, 2016, 6 (07) :4253-4257