Plasmon reflection reveals local electronic properties of natural graphene wrinkles

被引:4
作者
Chen, Runkun [1 ]
Yang, Cui [1 ]
Jia, Yuping [2 ,3 ]
Guo, Liwei [4 ,5 ,6 ]
Chen, Jianing [1 ,6 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Phys, Beijing Natl Lab Opt Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Lab Adv Mat & Electron Microscopy, Beijing Natl Lab Condensed Matter Phys,Res & Dev, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100190, Peoples R China
[6] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene plasmons; wrinkle; reflection; electronics; RAMAN-SPECTROSCOPY; GRAPHITE;
D O I
10.1088/1674-1056/ab46a2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We systematically studied surface plasmons reflection by graphene wrinkles with different heights on SiC substrate. Combined with numerical simulation, we found that the geometry corrugation of a few nanometer height wrinkle alone does not causes a reflection of graphene plasmons. Instead, the separated wrinkle from substrate exhibits a nonlinear spatial Fermi energy distribution along the wrinkle, which acts as a heterojunction. Therefor a higher graphene wrinkle induces a stronger damped region when propagating graphene surface plasmons encounter the wrinkle and get reflected.
引用
收藏
页数:5
相关论文
共 40 条
[1]  
Abajo D, 2014, ACS PHOTONICS, V1, P135, DOI [10.1021/ph400147y, DOI 10.1021/PH400147Y]
[2]  
Bao WZ, 2009, NAT NANOTECHNOL, V4, P562, DOI [10.1038/NNANO.2009.191, 10.1038/nnano.2009.191]
[3]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   Epitaxial Graphene Growth on α-SiC: Probing the Effect of Surface Orientation [J].
Camara, N. ;
Jouault, B. ;
Caboni, A. ;
Tiberj, A. ;
Godignon, P. ;
Camassel, J. .
NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2011, 3 (01) :49-54
[6]   Strong Plasmon Reflection at Nanometer-Size Gaps in Monolayer Graphene on SiC [J].
Chen, Jianing ;
Nesterov, Maxim L. ;
Nikitin, Alexey Yu ;
Thongrattanasiri, Sukosin ;
Alonso-Gonzalez, Pablo ;
Slipchenko, Tetiana M. ;
Speck, Florian ;
Ostler, Markus ;
Seyller, Thomas ;
Crassee, Iris ;
Koppens, Frank H. L. ;
Martin-Moreno, Luis ;
Garcia de Abajo, F. Javier ;
Kuzmenko, Alexey B. ;
Hillenbrand, Rainer .
NANO LETTERS, 2013, 13 (12) :6210-6215
[7]   Optical nano-imaging of gate-tunable graphene plasmons [J].
Chen, Jianing ;
Badioli, Michela ;
Alonso-Gonzalez, Pablo ;
Thongrattanasiri, Sukosin ;
Huth, Florian ;
Osmond, Johann ;
Spasenovic, Marko ;
Centeno, Alba ;
Pesquera, Amaia ;
Godignon, Philippe ;
Zurutuza Elorza, Amaia ;
Camara, Nicolas ;
Javier Garcia de Abajo, F. ;
Hillenbrand, Rainer ;
Koppens, Frank H. L. .
NATURE, 2012, 487 (7405) :77-81
[8]   Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications [J].
Chen, Wen ;
Hu, Huatian ;
Jiang, Wei ;
Xu, Yuhao ;
Zhang, Shunping ;
Xu, Hongxing .
CHINESE PHYSICS B, 2018, 27 (10)
[9]   Surface-enhanced Raman scattering effect of silver nanoparticles array [J].
Cheng Zi-Qiang ;
Shi Hai-Quan ;
Yu Ping ;
Liu Zhi-Min .
ACTA PHYSICA SINICA, 2018, 67 (19)
[10]   Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide [J].
de Heer, Walt A. ;
Berger, Claire ;
Ruan, Ming ;
Sprinkle, Mike ;
Li, Xuebin ;
Hu, Yike ;
Zhang, Baiqian ;
Hankinson, John ;
Conrad, Edward .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (41) :16900-16905